Sequential Quantum Gate Decomposer  v1.9.3
Powerful decomposition of general unitarias into one- and two-qubit gates gates
Namespaces | Functions | Variables
16_qubit_trained_circuit_VQE.py File Reference

Go to the source code of this file.

Namespaces

 16_qubit_trained_circuit_VQE
 

Functions

def 16_qubit_trained_circuit_VQE.generate_circuit_ansatz (layers, inner_blocks, qbit_num)
 
def 16_qubit_trained_circuit_VQE.generate_hamiltonian (n)
 
def 16_qubit_trained_circuit_VQE.generate_hamiltonian_tmp (n)
 

Variables

dictionary 16_qubit_trained_circuit_VQE.config
 
 16_qubit_trained_circuit_VQE.eigval = np.real(eigvals[0])
 
 16_qubit_trained_circuit_VQE.eigvec = eigvecs[:,0]
 
 16_qubit_trained_circuit_VQE.entropy = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=parameters, qubit_list=qubit_list )
 
 16_qubit_trained_circuit_VQE.entropy_exact_gs = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=np.array([]), qubit_list=[0,1], input_state=eigvec )
 
 16_qubit_trained_circuit_VQE.flush
 
def 16_qubit_trained_circuit_VQE.Hamiltonian = generate_hamiltonian_tmp( qbit_num )
 
 16_qubit_trained_circuit_VQE.initial_state = np.zeros( (1 << qbit_num), dtype=np.complex128 )
 
int 16_qubit_trained_circuit_VQE.inner_blocks = 1
 
 16_qubit_trained_circuit_VQE.k
 
int 16_qubit_trained_circuit_VQE.layers = 1000
 
 16_qubit_trained_circuit_VQE.linewidth
 
int 16_qubit_trained_circuit_VQE.normalized_entropy = entropy/page_entropy
 
int 16_qubit_trained_circuit_VQE.normalized_entropy_exact_gs = entropy_exact_gs/page_entropy
 
 16_qubit_trained_circuit_VQE.overlap = state_to_transform.transpose().conjugate() @ eigvecs
 
 16_qubit_trained_circuit_VQE.overlap_norm = np.real(overlap * overlap.conjugate())
 
int 16_qubit_trained_circuit_VQE.page_entropy = 2 * np.log(2.0) - 1.0/( pow(2, qbit_num-2*2+1) )
 
 16_qubit_trained_circuit_VQE.param_num = VQE_Heisenberg.get_Parameter_Num()
 
 16_qubit_trained_circuit_VQE.parameters = np.load( 'COSINE_1000x1_layers_Heisenberg_16_3point_zero_init_3overlap0.8602661822824491.npy' )
 
int 16_qubit_trained_circuit_VQE.qbit_num = 16
 
list 16_qubit_trained_circuit_VQE.qubit_list = [0,1]
 
def 16_qubit_trained_circuit_VQE.squander_circuit = generate_circuit_ansatz( layers, inner_blocks, qbit_num)
 
 16_qubit_trained_circuit_VQE.state_to_transform = initial_state.copy()
 
list 16_qubit_trained_circuit_VQE.topology = []
 
 16_qubit_trained_circuit_VQE.VQE_energy = VQE_Heisenberg.Optimization_Problem( parameters )
 
 16_qubit_trained_circuit_VQE.VQE_Heisenberg = Variational_Quantum_Eigensolver(Hamiltonian, qbit_num, config)
 
 16_qubit_trained_circuit_VQE.which