|
Sequential Quantum Gate Decomposer
v1.9.3
Powerful decomposition of general unitarias into one- and two-qubit gates gates
|
Functions | |
| def | generate_circuit_ansatz (layers, inner_blocks, qbit_num) |
| def | generate_hamiltonian (n) |
| def | generate_hamiltonian_tmp (n) |
Variables | |
| dictionary | config |
| eigval = np.real(eigvals[0]) | |
| eigvec = eigvecs[:,0] | |
| entropy = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=parameters, qubit_list=qubit_list ) | |
| entropy_exact_gs = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=np.array([]), qubit_list=[0,1], input_state=eigvec ) | |
| flush | |
| def | Hamiltonian = generate_hamiltonian_tmp( qbit_num ) |
| initial_state = np.zeros( (1 << qbit_num), dtype=np.complex128 ) | |
| int | inner_blocks = 1 |
| k | |
| int | layers = 1000 |
| linewidth | |
| int | normalized_entropy = entropy/page_entropy |
| int | normalized_entropy_exact_gs = entropy_exact_gs/page_entropy |
| overlap = state_to_transform.transpose().conjugate() @ eigvecs | |
| overlap_norm = np.real(overlap * overlap.conjugate()) | |
| int | page_entropy = 2 * np.log(2.0) - 1.0/( pow(2, qbit_num-2*2+1) ) |
| param_num = VQE_Heisenberg.get_Parameter_Num() | |
| parameters = np.load( 'COSINE_1000x1_layers_Heisenberg_16_3point_zero_init_3overlap0.8602661822824491.npy' ) | |
| int | qbit_num = 16 |
| list | qubit_list = [0,1] |
| def | squander_circuit = generate_circuit_ansatz( layers, inner_blocks, qbit_num) |
| state_to_transform = initial_state.copy() | |
| list | topology = [] |
| VQE_energy = VQE_Heisenberg.Optimization_Problem( parameters ) | |
| VQE_Heisenberg = Variational_Quantum_Eigensolver(Hamiltonian, qbit_num, config) | |
| which | |
| def 16_qubit_trained_circuit_VQE.generate_circuit_ansatz | ( | layers, | |
| inner_blocks, | |||
| qbit_num | |||
| ) |
Definition at line 49 of file 16_qubit_trained_circuit_VQE.py.
| def 16_qubit_trained_circuit_VQE.generate_hamiltonian | ( | n | ) |
Definition at line 35 of file 16_qubit_trained_circuit_VQE.py.
| def 16_qubit_trained_circuit_VQE.generate_hamiltonian_tmp | ( | n | ) |
Definition at line 20 of file 16_qubit_trained_circuit_VQE.py.
| dictionary 16_qubit_trained_circuit_VQE.config |
Definition at line 158 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.eigval = np.real(eigvals[0]) |
Definition at line 151 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.eigvec = eigvecs[:,0] |
Definition at line 152 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.entropy = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=parameters, qubit_list=qubit_list ) |
Definition at line 199 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.entropy_exact_gs = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=np.array([]), qubit_list=[0,1], input_state=eigvec ) |
Definition at line 184 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.flush |
Definition at line 189 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.Hamiltonian = generate_hamiltonian_tmp( qbit_num ) |
Definition at line 143 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.initial_state = np.zeros( (1 << qbit_num), dtype=np.complex128 ) |
Definition at line 206 of file 16_qubit_trained_circuit_VQE.py.
| int 16_qubit_trained_circuit_VQE.inner_blocks = 1 |
Definition at line 135 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.k |
Definition at line 150 of file 16_qubit_trained_circuit_VQE.py.
| int 16_qubit_trained_circuit_VQE.layers = 1000 |
Definition at line 132 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.linewidth |
Definition at line 12 of file 16_qubit_trained_circuit_VQE.py.
| int 16_qubit_trained_circuit_VQE.normalized_entropy = entropy/page_entropy |
Definition at line 200 of file 16_qubit_trained_circuit_VQE.py.
| int 16_qubit_trained_circuit_VQE.normalized_entropy_exact_gs = entropy_exact_gs/page_entropy |
Definition at line 185 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.overlap = state_to_transform.transpose().conjugate() @ eigvecs |
Definition at line 215 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.overlap_norm = np.real(overlap * overlap.conjugate()) |
Definition at line 216 of file 16_qubit_trained_circuit_VQE.py.
| float 16_qubit_trained_circuit_VQE.page_entropy = 2 * np.log(2.0) - 1.0/( pow(2, qbit_num-2*2+1) ) |
Definition at line 183 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.param_num = VQE_Heisenberg.get_Parameter_Num() |
Definition at line 172 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.parameters = np.load( 'COSINE_1000x1_layers_Heisenberg_16_3point_zero_init_3overlap0.8602661822824491.npy' ) |
Definition at line 175 of file 16_qubit_trained_circuit_VQE.py.
| int 16_qubit_trained_circuit_VQE.qbit_num = 16 |
Definition at line 138 of file 16_qubit_trained_circuit_VQE.py.
| list 16_qubit_trained_circuit_VQE.qubit_list = [0,1] |
Definition at line 196 of file 16_qubit_trained_circuit_VQE.py.
| def 16_qubit_trained_circuit_VQE.squander_circuit = generate_circuit_ansatz( layers, inner_blocks, qbit_num) |
Definition at line 147 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.state_to_transform = initial_state.copy() |
Definition at line 210 of file 16_qubit_trained_circuit_VQE.py.
| list 16_qubit_trained_circuit_VQE.topology = [] |
Definition at line 18 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.VQE_energy = VQE_Heisenberg.Optimization_Problem( parameters ) |
Definition at line 193 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.VQE_Heisenberg = Variational_Quantum_Eigensolver(Hamiltonian, qbit_num, config) |
Definition at line 163 of file 16_qubit_trained_circuit_VQE.py.
| 16_qubit_trained_circuit_VQE.which |
Definition at line 150 of file 16_qubit_trained_circuit_VQE.py.
1.8.13