Sequential Quantum Gate Decomposer  v1.9.3
Powerful decomposition of general unitarias into one- and two-qubit gates gates
Functions | Variables
16_qubit_trained_circuit_VQE Namespace Reference

Functions

def generate_circuit_ansatz (layers, inner_blocks, qbit_num)
 
def generate_hamiltonian (n)
 
def generate_hamiltonian_tmp (n)
 

Variables

dictionary config
 
 eigval = np.real(eigvals[0])
 
 eigvec = eigvecs[:,0]
 
 entropy = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=parameters, qubit_list=qubit_list )
 
 entropy_exact_gs = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=np.array([]), qubit_list=[0,1], input_state=eigvec )
 
 flush
 
def Hamiltonian = generate_hamiltonian_tmp( qbit_num )
 
 initial_state = np.zeros( (1 << qbit_num), dtype=np.complex128 )
 
int inner_blocks = 1
 
 k
 
int layers = 1000
 
 linewidth
 
int normalized_entropy = entropy/page_entropy
 
int normalized_entropy_exact_gs = entropy_exact_gs/page_entropy
 
 overlap = state_to_transform.transpose().conjugate() @ eigvecs
 
 overlap_norm = np.real(overlap * overlap.conjugate())
 
int page_entropy = 2 * np.log(2.0) - 1.0/( pow(2, qbit_num-2*2+1) )
 
 param_num = VQE_Heisenberg.get_Parameter_Num()
 
 parameters = np.load( 'COSINE_1000x1_layers_Heisenberg_16_3point_zero_init_3overlap0.8602661822824491.npy' )
 
int qbit_num = 16
 
list qubit_list = [0,1]
 
def squander_circuit = generate_circuit_ansatz( layers, inner_blocks, qbit_num)
 
 state_to_transform = initial_state.copy()
 
list topology = []
 
 VQE_energy = VQE_Heisenberg.Optimization_Problem( parameters )
 
 VQE_Heisenberg = Variational_Quantum_Eigensolver(Hamiltonian, qbit_num, config)
 
 which
 

Function Documentation

◆ generate_circuit_ansatz()

def 16_qubit_trained_circuit_VQE.generate_circuit_ansatz (   layers,
  inner_blocks,
  qbit_num 
)

Definition at line 49 of file 16_qubit_trained_circuit_VQE.py.

◆ generate_hamiltonian()

def 16_qubit_trained_circuit_VQE.generate_hamiltonian (   n)

Definition at line 35 of file 16_qubit_trained_circuit_VQE.py.

◆ generate_hamiltonian_tmp()

def 16_qubit_trained_circuit_VQE.generate_hamiltonian_tmp (   n)

Definition at line 20 of file 16_qubit_trained_circuit_VQE.py.

Variable Documentation

◆ config

dictionary 16_qubit_trained_circuit_VQE.config
Initial value:
1 = {"max_inner_iterations":800,
2  "batch_size": 128,
3  "convergence_length": 20}

Definition at line 158 of file 16_qubit_trained_circuit_VQE.py.

◆ eigval

16_qubit_trained_circuit_VQE.eigval = np.real(eigvals[0])

Definition at line 151 of file 16_qubit_trained_circuit_VQE.py.

◆ eigvec

16_qubit_trained_circuit_VQE.eigvec = eigvecs[:,0]

Definition at line 152 of file 16_qubit_trained_circuit_VQE.py.

◆ entropy

16_qubit_trained_circuit_VQE.entropy = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=parameters, qubit_list=qubit_list )

Definition at line 199 of file 16_qubit_trained_circuit_VQE.py.

◆ entropy_exact_gs

16_qubit_trained_circuit_VQE.entropy_exact_gs = VQE_Heisenberg.get_Second_Renyi_Entropy( parameters=np.array([]), qubit_list=[0,1], input_state=eigvec )

Definition at line 184 of file 16_qubit_trained_circuit_VQE.py.

◆ flush

16_qubit_trained_circuit_VQE.flush

Definition at line 189 of file 16_qubit_trained_circuit_VQE.py.

◆ Hamiltonian

16_qubit_trained_circuit_VQE.Hamiltonian = generate_hamiltonian_tmp( qbit_num )

Definition at line 143 of file 16_qubit_trained_circuit_VQE.py.

◆ initial_state

16_qubit_trained_circuit_VQE.initial_state = np.zeros( (1 << qbit_num), dtype=np.complex128 )

Definition at line 206 of file 16_qubit_trained_circuit_VQE.py.

◆ inner_blocks

int 16_qubit_trained_circuit_VQE.inner_blocks = 1

Definition at line 135 of file 16_qubit_trained_circuit_VQE.py.

◆ k

16_qubit_trained_circuit_VQE.k

Definition at line 150 of file 16_qubit_trained_circuit_VQE.py.

◆ layers

int 16_qubit_trained_circuit_VQE.layers = 1000

Definition at line 132 of file 16_qubit_trained_circuit_VQE.py.

◆ linewidth

16_qubit_trained_circuit_VQE.linewidth

Definition at line 12 of file 16_qubit_trained_circuit_VQE.py.

◆ normalized_entropy

int 16_qubit_trained_circuit_VQE.normalized_entropy = entropy/page_entropy

Definition at line 200 of file 16_qubit_trained_circuit_VQE.py.

◆ normalized_entropy_exact_gs

int 16_qubit_trained_circuit_VQE.normalized_entropy_exact_gs = entropy_exact_gs/page_entropy

Definition at line 185 of file 16_qubit_trained_circuit_VQE.py.

◆ overlap

16_qubit_trained_circuit_VQE.overlap = state_to_transform.transpose().conjugate() @ eigvecs

Definition at line 215 of file 16_qubit_trained_circuit_VQE.py.

◆ overlap_norm

16_qubit_trained_circuit_VQE.overlap_norm = np.real(overlap * overlap.conjugate())

Definition at line 216 of file 16_qubit_trained_circuit_VQE.py.

◆ page_entropy

float 16_qubit_trained_circuit_VQE.page_entropy = 2 * np.log(2.0) - 1.0/( pow(2, qbit_num-2*2+1) )

Definition at line 183 of file 16_qubit_trained_circuit_VQE.py.

◆ param_num

16_qubit_trained_circuit_VQE.param_num = VQE_Heisenberg.get_Parameter_Num()

Definition at line 172 of file 16_qubit_trained_circuit_VQE.py.

◆ parameters

16_qubit_trained_circuit_VQE.parameters = np.load( 'COSINE_1000x1_layers_Heisenberg_16_3point_zero_init_3overlap0.8602661822824491.npy' )

Definition at line 175 of file 16_qubit_trained_circuit_VQE.py.

◆ qbit_num

int 16_qubit_trained_circuit_VQE.qbit_num = 16

Definition at line 138 of file 16_qubit_trained_circuit_VQE.py.

◆ qubit_list

list 16_qubit_trained_circuit_VQE.qubit_list = [0,1]

Definition at line 196 of file 16_qubit_trained_circuit_VQE.py.

◆ squander_circuit

def 16_qubit_trained_circuit_VQE.squander_circuit = generate_circuit_ansatz( layers, inner_blocks, qbit_num)

Definition at line 147 of file 16_qubit_trained_circuit_VQE.py.

◆ state_to_transform

16_qubit_trained_circuit_VQE.state_to_transform = initial_state.copy()

Definition at line 210 of file 16_qubit_trained_circuit_VQE.py.

◆ topology

list 16_qubit_trained_circuit_VQE.topology = []

Definition at line 18 of file 16_qubit_trained_circuit_VQE.py.

◆ VQE_energy

16_qubit_trained_circuit_VQE.VQE_energy = VQE_Heisenberg.Optimization_Problem( parameters )

Definition at line 193 of file 16_qubit_trained_circuit_VQE.py.

◆ VQE_Heisenberg

16_qubit_trained_circuit_VQE.VQE_Heisenberg = Variational_Quantum_Eigensolver(Hamiltonian, qbit_num, config)

Definition at line 163 of file 16_qubit_trained_circuit_VQE.py.

◆ which

16_qubit_trained_circuit_VQE.which

Definition at line 150 of file 16_qubit_trained_circuit_VQE.py.