A class implementing the BayesOpt algorithm as seen in: https://browse.arxiv.org/pdf/1807.02811.pdf.
More...
#include <Bayes_Opt.h>
|
void | calculate_conditional_distribution (Matrix_real x, Matrix_real cov_x, double &mu_n, double &sigma2_n) |
|
void | calculate_conditional_distribution_combined (Matrix_real x, Matrix_real cov_x, Matrix_real cov_x_grad, Matrix_real cov_self_grad, double &mu_n, double &sigma2_n, Matrix_real &grad_mu, Matrix_real &grad_sigma) |
|
double | cdf (double mu, double sigma) |
|
double | expected_improvement (double mu_n, double sigma_n) |
|
void | expected_improvement_combined (double mu_n, double sigma_n, Matrix_real &grad_mu, Matrix_real &grad_sigma, double *f, Matrix_real &grad) |
|
double | grad_pdf (double mu, double sigma, double grad_mu, double grad_sigma) |
|
double | kernel (Matrix_real x0, Matrix_real x1) |
|
void | kernel_combined (Matrix_real x0, Matrix_real x, double &f, Matrix_real &grad, int grad_var, bool self) |
|
double | pdf (double mu, double sigma) |
|
void | update_covariance (Matrix_real cov_new) |
|
A class implementing the BayesOpt algorithm as seen in: https://browse.arxiv.org/pdf/1807.02811.pdf.
Definition at line 59 of file Bayes_Opt.h.
◆ Bayes_Opt()
Bayes_Opt::Bayes_Opt |
( |
double(*)(Matrix_real, void *) |
f_pointer, |
|
|
void * |
meta_data_in |
|
) |
| |
Constructor of the class.
- Parameters
-
f_pointer | A function pointer (x, meta_data, f, grad) to evaluate the cost function and its gradients. The cost function and the gradient vector are returned via reference by the two last arguments. |
meta_data | void pointer to additional meta data needed to evaluate the cost function. |
- Returns
- An instance of the class
Definition at line 76 of file common/Bayes_Opt.cpp.
◆ ~Bayes_Opt()
Bayes_Opt::~Bayes_Opt |
( |
| ) |
|
◆ calculate_conditional_distribution()
void Bayes_Opt::calculate_conditional_distribution |
( |
Matrix_real |
x, |
|
|
Matrix_real |
cov_x, |
|
|
double & |
mu_n, |
|
|
double & |
sigma2_n |
|
) |
| |
|
protected |
◆ calculate_conditional_distribution_combined()
◆ cdf()
double Bayes_Opt::cdf |
( |
double |
mu, |
|
|
double |
sigma |
|
) |
| |
|
protected |
◆ expected_improvement()
double Bayes_Opt::expected_improvement |
( |
double |
mu_n, |
|
|
double |
sigma_n |
|
) |
| |
|
protected |
◆ expected_improvement_combined()
◆ grad_pdf()
double Bayes_Opt::grad_pdf |
( |
double |
mu, |
|
|
double |
sigma, |
|
|
double |
grad_mu, |
|
|
double |
grad_sigma |
|
) |
| |
|
protected |
◆ kernel()
◆ kernel_combined()
◆ optimization_problem()
double Bayes_Opt::optimization_problem |
( |
Matrix_real |
x_Powell, |
|
|
void * |
void_instance |
|
) |
| |
|
staticprotected |
◆ optimization_problem_combined()
void Bayes_Opt::optimization_problem_combined |
( |
Matrix_real |
x, |
|
|
void * |
void_instance, |
|
|
double * |
f0, |
|
|
Matrix_real & |
grad |
|
) |
| |
|
staticprotected |
◆ pdf()
double Bayes_Opt::pdf |
( |
double |
mu, |
|
|
double |
sigma |
|
) |
| |
|
protected |
◆ Start_Optimization()
double Bayes_Opt::Start_Optimization |
( |
Matrix_real & |
x, |
|
|
int |
max_iterations_in |
|
) |
| |
◆ update_covariance()
void Bayes_Opt::update_covariance |
( |
Matrix_real |
cov_new | ) |
|
|
protected |
◆ alpha0
amplitude of the kernel
Definition at line 77 of file Bayes_Opt.h.
◆ costfnc
double(* Bayes_Opt::costfnc) (Matrix_real x, void *params) |
|
protected |
function pointer to evaluate the cost function and its gradient vector
Definition at line 80 of file Bayes_Opt.h.
◆ covariance
◆ current_maximum
double Bayes_Opt::current_maximum |
|
protected |
◆ f_prev
std::vector<double> Bayes_Opt::f_prev |
|
protected |
◆ gen
std::mt19937 Bayes_Opt::gen |
|
protected |
◆ initial_samples
int Bayes_Opt::initial_samples |
|
protected |
◆ maximal_iterations
long Bayes_Opt::maximal_iterations |
|
protected |
maximal count of iterations during the optimization
Definition at line 71 of file Bayes_Opt.h.
◆ meta_data
void* Bayes_Opt::meta_data |
|
protected |
additional data needed to evaluate the cost function
Definition at line 83 of file Bayes_Opt.h.
◆ mu_0
constant for the mean function
Definition at line 62 of file Bayes_Opt.h.
◆ num_precision
double Bayes_Opt::num_precision |
|
protected |
numerical precision used in the calculations
Definition at line 74 of file Bayes_Opt.h.
◆ variable_num
int Bayes_Opt::variable_num |
|
protected |
number of independent variables in the problem
Definition at line 68 of file Bayes_Opt.h.
◆ x_prev
The documentation for this class was generated from the following files: