mlpack
|
#include <mlpack/prereqs.hpp>
#include "worker/one_step_q_learning_worker.hpp"
#include "worker/one_step_sarsa_worker.hpp"
#include "worker/n_step_q_learning_worker.hpp"
#include "training_config.hpp"
#include "async_learning_impl.hpp"
Go to the source code of this file.
Classes | |
class | mlpack::rl::AsyncLearning< WorkerType, EnvironmentType, NetworkType, UpdaterType, PolicyType > |
Wrapper of various asynchronous learning algorithms, e.g. More... | |
class | mlpack::rl::OneStepQLearningWorker< EnvironmentType, NetworkType, UpdaterType, PolicyType > |
Forward declaration of OneStepQLearningWorker. More... | |
class | mlpack::rl::OneStepSarsaWorker< EnvironmentType, NetworkType, UpdaterType, PolicyType > |
Forward declaration of OneStepSarsaWorker. More... | |
class | mlpack::rl::NStepQLearningWorker< EnvironmentType, NetworkType, UpdaterType, PolicyType > |
Forward declaration of NStepQLearningWorker. More... | |
Namespaces | |
mlpack | |
Linear algebra utility functions, generally performed on matrices or vectors. | |
Typedefs | |
template<typename EnvironmentType , typename NetworkType , typename UpdaterType , typename PolicyType > | |
using | mlpack::rl::OneStepQLearning = AsyncLearning< OneStepQLearningWorker< EnvironmentType, NetworkType, UpdaterType, PolicyType >, EnvironmentType, NetworkType, UpdaterType, PolicyType > |
Convenient typedef for async one step q-learning. More... | |
template<typename EnvironmentType , typename NetworkType , typename UpdaterType , typename PolicyType > | |
using | mlpack::rl::OneStepSarsa = AsyncLearning< OneStepSarsaWorker< EnvironmentType, NetworkType, UpdaterType, PolicyType >, EnvironmentType, NetworkType, UpdaterType, PolicyType > |
Convenient typedef for async one step Sarsa. More... | |
template<typename EnvironmentType , typename NetworkType , typename UpdaterType , typename PolicyType > | |
using | mlpack::rl::NStepQLearning = AsyncLearning< NStepQLearningWorker< EnvironmentType, NetworkType, UpdaterType, PolicyType >, EnvironmentType, NetworkType, UpdaterType, PolicyType > |
Convenient typedef for async n step q-learning. More... | |
This file is the definition of AsyncLearning class, which is wrapper for various asynchronous learning algorithms.
mlpack is free software; you may redistribute it and/or modify it under the terms of the 3-clause BSD license. You should have received a copy of the 3-clause BSD license along with mlpack. If not, see http://www.opensource.org/licenses/BSD-3-Clause for more information.
using mlpack::rl::NStepQLearning = typedef AsyncLearning<NStepQLearningWorker<EnvironmentType, NetworkType, UpdaterType, PolicyType>, EnvironmentType, NetworkType, UpdaterType, PolicyType> |
Convenient typedef for async n step q-learning.
EnvironmentType | The type of the reinforcement learning task. |
NetworkType | The type of the network model. |
UpdaterType | The type of the optimizer. |
PolicyType | The type of the behavior policy. |
using mlpack::rl::OneStepQLearning = typedef AsyncLearning<OneStepQLearningWorker<EnvironmentType, NetworkType, UpdaterType, PolicyType>, EnvironmentType, NetworkType, UpdaterType, PolicyType> |
Convenient typedef for async one step q-learning.
EnvironmentType | The type of the reinforcement learning task. |
NetworkType | The type of the network model. |
UpdaterType | The type of the optimizer. |
PolicyType | The type of the behavior policy. |
using mlpack::rl::OneStepSarsa = typedef AsyncLearning<OneStepSarsaWorker<EnvironmentType, NetworkType, UpdaterType, PolicyType>, EnvironmentType, NetworkType, UpdaterType, PolicyType> |
Convenient typedef for async one step Sarsa.
EnvironmentType | The type of the reinforcement learning task. |
NetworkType | The type of the network model. |
UpdaterType | The type of the optimizer. |
PolicyType | The type of the behavior policy. |