mlpack
|
Test the Linear SVM class. More...
#include <ensmallen.hpp>
#include <ensmallen_bits/callbacks/callbacks.hpp>
#include <mlpack/core.hpp>
#include <mlpack/methods/ann/ffn.hpp>
#include <mlpack/methods/ann/rnn.hpp>
#include <mlpack/methods/ann/rbm/rbm.hpp>
#include <mlpack/methods/ann/loss_functions/mean_squared_error.hpp>
#include <mlpack/methods/logistic_regression/logistic_regression.hpp>
#include <mlpack/methods/lmnn/lmnn.hpp>
#include <mlpack/methods/nca/nca.hpp>
#include <mlpack/core/metrics/lmetric.hpp>
#include <mlpack/methods/softmax_regression/softmax_regression.hpp>
#include <mlpack/methods/softmax_regression/softmax_regression_impl.hpp>
#include <mlpack/methods/ann/init_rules/gaussian_init.hpp>
#include <mlpack/methods/sparse_autoencoder/sparse_autoencoder.hpp>
#include "catch.hpp"
Functions | |
TEST_CASE ("FFNCallbackTest", "[CallbackTest]") | |
Test a FFN model with PrintLoss callback. | |
TEST_CASE ("FFNWithOptimizerCallbackTest", "[CallbackTest]") | |
Test a FFN model with PrintLoss callback and optimizer parameter. | |
TEST_CASE ("RNNCallbackTest", "[CallbackTest]") | |
Test a RNN model with PrintLoss callback. | |
TEST_CASE ("RNNWithOptimizerCallbackTest", "[CallbackTest]") | |
Test a RNN model with PrintLoss callback and optimizer parameter. | |
TEST_CASE ("LRWithOptimizerCallback", "[CallbackTest]") | |
Test Logistic regression implementation with PrintLoss callback. | |
TEST_CASE ("LMNNWithOptimizerCallback", "[CallbackTest]") | |
Test LMNN implementation with ProgressBar callback. | |
TEST_CASE ("NCAWithOptimizerCallback", "[CallbackTest]") | |
Test NCA implementation with ProgressBar callback. | |
TEST_CASE ("SRWithOptimizerCallback", "[CallbackTest]") | |
Test softmax_regression implementation with PrintLoss callback. | |
TEST_CASE ("RBMCallbackTest", "[CallbackTest]") | |
TEST_CASE ("SparseAutoencodeCallbackTest", "[CallbackTest]") | |
Tests the SparseAutoencoder implementation with StoreBestCoordinates callback. | |
Test the Linear SVM class.
mlpack is free software; you may redistribute it and/or modify it under the terms of the 3-clause BSD license. You should have received a copy of the 3-clause BSD license along with mlpack. If not, see http://www.opensource.org/licenses/BSD-3-Clause for more information.