mlpack
|
Artificial Neural Network. More...
Classes | |
class | AdaptiveMaxPooling |
Implementation of the AdaptiveMaxPooling layer. More... | |
class | AdaptiveMeanPooling |
Implementation of the AdaptiveMeanPooling. More... | |
class | Add |
Implementation of the Add module class. More... | |
class | AddMerge |
Implementation of the AddMerge module class. More... | |
class | AddVisitor |
AddVisitor exposes the Add() method of the given module. More... | |
class | AlphaDropout |
The alpha - dropout layer is a regularizer that randomly with probability 'ratio' sets input values to alphaDash. More... | |
class | AtrousConvolution |
Implementation of the Atrous Convolution class. More... | |
class | BackwardVisitor |
BackwardVisitor executes the Backward() function given the input, error and delta parameter. More... | |
class | BaseLayer |
Implementation of the base layer. More... | |
class | BatchNorm |
Declaration of the Batch Normalization layer class. More... | |
class | BCELoss |
The binary-cross-entropy performance function measures the Binary Cross Entropy between the target and the output. More... | |
class | BernoulliDistribution |
Multiple independent Bernoulli distributions. More... | |
class | BiasSetVisitor |
BiasSetVisitor updates the module bias parameters given the parameters set. More... | |
class | BilinearInterpolation |
Definition and Implementation of the Bilinear Interpolation Layer. More... | |
class | BinaryRBM |
For more information, see the following paper: More... | |
class | BRNN |
Implementation of a standard bidirectional recurrent neural network container. More... | |
class | CELU |
The CELU activation function, defined by. More... | |
class | ChannelShuffle |
Definition and implementation of the Channel Shuffle Layer. More... | |
class | Concat |
Implementation of the Concat class. More... | |
class | Concatenate |
Implementation of the Concatenate module class. More... | |
class | ConcatPerformance |
Implementation of the concat performance class. More... | |
class | Constant |
Implementation of the constant layer. More... | |
class | ConstInitialization |
This class is used to initialize weight matrix with constant values. More... | |
class | Convolution |
Implementation of the Convolution class. More... | |
class | CopyVisitor |
This visitor is to support copy constructor for neural network module. More... | |
class | CosineEmbeddingLoss |
Cosine Embedding Loss function is used for measuring whether two inputs are similar or dissimilar, using the cosine distance, and is typically used for learning nonlinear embeddings or semi-supervised learning. More... | |
class | CReLU |
A concatenated ReLU has two outputs, one ReLU and one negative ReLU, concatenated together. More... | |
class | DCGAN |
For more information, see the following paper: More... | |
class | DeleteVisitor |
DeleteVisitor executes the destructor of the instantiated object. More... | |
class | DeltaVisitor |
DeltaVisitor exposes the delta parameter of the given module. More... | |
class | DeterministicSetVisitor |
DeterministicSetVisitor set the deterministic parameter given the deterministic value. More... | |
class | DiceLoss |
The dice loss performance function measures the network's performance according to the dice coefficient between the input and target distributions. More... | |
class | DropConnect |
The DropConnect layer is a regularizer that randomly with probability ratio sets the connection values to zero and scales the remaining elements by factor 1 /(1 - ratio). More... | |
class | Dropout |
The dropout layer is a regularizer that randomly with probability 'ratio' sets input values to zero and scales the remaining elements by factor 1 / (1 - ratio) rather than during test time so as to keep the expected sum same. More... | |
class | EarthMoverDistance |
The earth mover distance function measures the network's performance according to the Kantorovich-Rubinstein duality approximation. More... | |
class | ElishFunction |
The ELiSH function, defined by. More... | |
class | ElliotFunction |
The Elliot function, defined by. More... | |
class | ELU |
The ELU activation function, defined by. More... | |
class | EmptyLoss |
The empty loss does nothing, letting the user calculate the loss outside the model. More... | |
class | FastLSTM |
An implementation of a faster version of the Fast LSTM network layer. More... | |
class | FFN |
Implementation of a standard feed forward network. More... | |
class | FFTConvolution |
Computes the two-dimensional convolution through fft. More... | |
class | FlattenTSwish |
The Flatten T Swish activation function, defined by. More... | |
class | FlexibleReLU |
The FlexibleReLU activation function, defined by. More... | |
class | ForwardVisitor |
ForwardVisitor executes the Forward() function given the input and output parameter. More... | |
class | FullConvolution |
class | GAN |
The implementation of the standard GAN module. More... | |
class | GaussianFunction |
The gaussian function, defined by. More... | |
class | GaussianInitialization |
This class is used to initialize weigth matrix with a gaussian. More... | |
class | GELUFunction |
The GELU function, defined by. More... | |
class | Glimpse |
The glimpse layer returns a retina-like representation (down-scaled cropped images) of increasing scale around a given location in a given image. More... | |
class | GlorotInitializationType |
This class is used to initialize the weight matrix with the Glorot Initialization method. More... | |
class | GradientSetVisitor |
GradientSetVisitor update the gradient parameter given the gradient set. More... | |
class | GradientUpdateVisitor |
GradientUpdateVisitor update the gradient parameter given the gradient set. More... | |
class | GradientVisitor |
SearchModeVisitor executes the Gradient() method of the given module using the input and delta parameter. More... | |
class | GradientZeroVisitor |
class | GRU |
An implementation of a gru network layer. More... | |
class | HardShrink |
Hard Shrink operator is defined as,. More... | |
class | HardSigmoidFunction |
The hard sigmoid function, defined by. More... | |
class | HardSwishFunction |
The Hard Swish function, defined by. More... | |
class | HardTanH |
The Hard Tanh activation function, defined by. More... | |
class | HeInitialization |
This class is used to initialize weight matrix with the He initialization rule given by He et. More... | |
class | Highway |
Implementation of the Highway layer. More... | |
class | HingeEmbeddingLoss |
The Hinge Embedding loss function is often used to compute the loss between y_true and y_pred. More... | |
class | HingeLoss |
Computes the hinge loss between \(y_true\) and \(y_pred\). More... | |
class | HuberLoss |
The Huber loss is a loss function used in robust regression, that is less sensitive to outliers in data than the squared error loss. More... | |
class | IdentityFunction |
The identity function, defined by. More... | |
class | InitTraits |
This is a template class that can provide information about various initialization methods. More... | |
class | InitTraits< KathirvalavakumarSubavathiInitialization > |
Initialization traits of the kathirvalavakumar subavath initialization rule. More... | |
class | InitTraits< NguyenWidrowInitialization > |
Initialization traits of the Nguyen-Widrow initialization rule. More... | |
class | InShapeVisitor |
InShapeVisitor returns the input shape a Layer expects. More... | |
class | InvQuadFunction |
The Inverse Quadratic function, defined by. More... | |
class | ISRLU |
The ISRLU activation function, defined by. More... | |
class | Join |
Implementation of the Join module class. More... | |
class | KathirvalavakumarSubavathiInitialization |
This class is used to initialize the weight matrix with the method proposed by T. More... | |
class | KLDivergence |
The Kullback–Leibler divergence is often used for continuous distributions (direct regression). More... | |
class | L1Loss |
The L1 loss is a loss function that measures the mean absolute error (MAE) between each element in the input x and target y. More... | |
class | LayerNorm |
Declaration of the Layer Normalization class. More... | |
class | LayerTraits |
This is a template class that can provide information about various layers. More... | |
class | LeakyReLU |
The LeakyReLU activation function, defined by. More... | |
class | LecunNormalInitialization |
This class is used to initialize weight matrix with the Lecun Normalization initialization rule. More... | |
class | Linear |
Implementation of the Linear layer class. More... | |
class | Linear3D |
Implementation of the Linear3D layer class. More... | |
class | LinearNoBias |
Implementation of the LinearNoBias class. More... | |
class | LiSHTFunction |
The LiSHT function, defined by. More... | |
class | LoadOutputParameterVisitor |
LoadOutputParameterVisitor restores the output parameter using the given parameter set. More... | |
class | LogCoshLoss |
The Log-Hyperbolic-Cosine loss function is often used to improve variational auto encoder. More... | |
class | LogisticFunction |
The logistic function, defined by. More... | |
class | LogSoftMax |
Implementation of the log softmax layer. More... | |
class | Lookup |
The Lookup class stores word embeddings and retrieves them using tokens. More... | |
class | LossVisitor |
LossVisitor exposes the Loss() method of the given module. More... | |
class | LpPooling |
Implementation of the LPPooling. More... | |
class | LRegularizer |
The L_p regularizer for arbitrary integer p. More... | |
class | LSTM |
Implementation of the LSTM module class. More... | |
class | MarginRankingLoss |
Margin ranking loss measures the loss given inputs and a label vector with values of 1 or -1. More... | |
class | MaxPooling |
Implementation of the MaxPooling layer. More... | |
class | MaxPoolingRule |
class | MeanAbsolutePercentageError |
The mean absolute percentage error performance function measures the network's performance according to the mean of the absolute difference between input and target divided by target. More... | |
class | MeanBiasError |
The mean bias error performance function measures the network's performance according to the mean of errors. More... | |
class | MeanPooling |
Implementation of the MeanPooling. More... | |
class | MeanPoolingRule |
class | MeanSquaredError |
The mean squared error performance function measures the network's performance according to the mean of squared errors. More... | |
class | MeanSquaredLogarithmicError |
The mean squared logarithmic error performance function measures the network's performance according to the mean of squared logarithmic errors. More... | |
class | MiniBatchDiscrimination |
Implementation of the MiniBatchDiscrimination layer. More... | |
class | MishFunction |
The Mish function, defined by. More... | |
class | MultiheadAttention |
Multihead Attention allows the model to jointly attend to information from different representation subspaces at different positions. More... | |
class | MultiplyConstant |
Implementation of the multiply constant layer. More... | |
class | MultiplyMerge |
Implementation of the MultiplyMerge module class. More... | |
class | MultiQuadFunction |
The Multi Quadratic function, defined by. More... | |
class | NaiveConvolution |
Computes the two-dimensional convolution. More... | |
class | NearestInterpolation |
Definition and Implementation of the Nearest Interpolation Layer. More... | |
class | NegativeLogLikelihood |
Implementation of the negative log likelihood layer. More... | |
class | NetworkInitialization |
This class is used to initialize the network with the given initialization rule. More... | |
class | NguyenWidrowInitialization |
This class is used to initialize the weight matrix with the Nguyen-Widrow method. More... | |
class | NoisyLinear |
Implementation of the NoisyLinear layer class. More... | |
class | NoRegularizer |
Implementation of the NoRegularizer. More... | |
class | NormalDistribution |
Implementation of the Normal Distribution function. More... | |
class | OivsInitialization |
This class is used to initialize the weight matrix with the oivs method. More... | |
class | OrthogonalInitialization |
This class is used to initialize the weight matrix with the orthogonal matrix initialization. More... | |
class | OrthogonalRegularizer |
Implementation of the OrthogonalRegularizer. More... | |
class | OutputHeightVisitor |
OutputHeightVisitor exposes the OutputHeight() method of the given module. More... | |
class | OutputParameterVisitor |
OutputParameterVisitor exposes the output parameter of the given module. More... | |
class | OutputWidthVisitor |
OutputWidthVisitor exposes the OutputWidth() method of the given module. More... | |
class | Padding |
Implementation of the Padding module class. More... | |
class | ParametersSetVisitor |
ParametersSetVisitor update the parameters set using the given matrix. More... | |
class | ParametersVisitor |
ParametersVisitor exposes the parameters set of the given module and stores the parameters set into the given matrix. More... | |
class | PixelShuffle |
Implementation of the PixelShuffle layer. More... | |
class | Poisson1Function |
The Poisson one function, defined by. More... | |
class | PoissonNLLLoss |
Implementation of the Poisson negative log likelihood loss. More... | |
class | PositionalEncoding |
Positional Encoding injects some information about the relative or absolute position of the tokens in the sequence. More... | |
class | PReLU |
The PReLU activation function, defined by (where alpha is trainable) More... | |
class | QuadraticFunction |
The Quadratic function, defined by. More... | |
class | RandomInitialization |
This class is used to initialize randomly the weight matrix. More... | |
class | RBF |
Implementation of the Radial Basis Function layer. More... | |
class | RBM |
The implementation of the RBM module. More... | |
class | ReconstructionLoss |
The reconstruction loss performance function measures the network's performance equal to the negative log probability of the target with the input distribution. More... | |
class | RectifierFunction |
The rectifier function, defined by. More... | |
class | Recurrent |
Implementation of the RecurrentLayer class. More... | |
class | RecurrentAttention |
This class implements the Recurrent Model for Visual Attention, using a variety of possible layer implementations. More... | |
class | ReinforceNormal |
Implementation of the reinforce normal layer. More... | |
class | ReLU6 |
class | Reparametrization |
Implementation of the Reparametrization layer class. More... | |
class | ResetCellVisitor |
ResetCellVisitor executes the ResetCell() function. More... | |
class | ResetVisitor |
ResetVisitor executes the Reset() function. More... | |
class | RewardSetVisitor |
RewardSetVisitor set the reward parameter given the reward value. More... | |
class | RNN |
Implementation of a standard recurrent neural network container. More... | |
class | RunSetVisitor |
RunSetVisitor set the run parameter given the run value. More... | |
class | SaveOutputParameterVisitor |
SaveOutputParameterVisitor saves the output parameter into the given parameter set. More... | |
class | Select |
The select module selects the specified column from a given input matrix. More... | |
class | Sequential |
Implementation of the Sequential class. More... | |
class | SetInputHeightVisitor |
SetInputHeightVisitor updates the input height parameter with the given input height. More... | |
class | SetInputWidthVisitor |
SetInputWidthVisitor updates the input width parameter with the given input width. More... | |
class | SigmoidCrossEntropyError |
The SigmoidCrossEntropyError performance function measures the network's performance according to the cross-entropy function between the input and target distributions. More... | |
class | SILUFunction |
The SILU function, defined by. More... | |
class | SoftMarginLoss |
class | Softmax |
Implementation of the Softmax layer. More... | |
class | Softmin |
Implementation of the Softmin layer. More... | |
class | SoftplusFunction |
The softplus function, defined by. More... | |
class | SoftShrink |
Soft Shrink operator is defined as, \begin{eqnarray*} f(x) &=& \begin{cases} x - \lambda & : x > \lambda \\ x + \lambda & : x < -\lambda \\ 0 & : otherwise. \\ \end{cases} \\ f'(x) &=& \begin{cases} 1 & : x > \lambda \\ 1 & : x < -\lambda \\ 0 & : otherwise. \end{cases} \end{eqnarray*} . More... | |
class | SoftsignFunction |
The softsign function, defined by. More... | |
class | SpatialDropout |
Implementation of the SpatialDropout layer. More... | |
class | SpikeSlabRBM |
For more information, see the following paper: More... | |
class | SplineFunction |
The Spline function, defined by. More... | |
class | StandardGAN |
For more information, see the following paper: More... | |
class | Subview |
Implementation of the subview layer. More... | |
class | SVDConvolution |
Computes the two-dimensional convolution using singular value decomposition. More... | |
class | SwishFunction |
The swish function, defined by. More... | |
class | TanhExpFunction |
The TanhExp function, defined by. More... | |
class | TanhFunction |
The tanh function, defined by. More... | |
class | TransposedConvolution |
Implementation of the Transposed Convolution class. More... | |
class | TripletMarginLoss |
The Triplet Margin Loss performance function measures the network's performance according to the relative distance from the anchor input of the positive (truthy) and negative (falsy) inputs. More... | |
class | ValidConvolution |
class | VirtualBatchNorm |
Declaration of the VirtualBatchNorm layer class. More... | |
class | VRClassReward |
Implementation of the variance reduced classification reinforcement layer. More... | |
class | WeightNorm |
Declaration of the WeightNorm layer class. More... | |
class | WeightSetVisitor |
WeightSetVisitor update the module parameters given the parameters set. More... | |
class | WeightSizeVisitor |
WeightSizeVisitor returns the number of weights of the given module. More... | |
class | WGAN |
For more information, see the following paper: More... | |
class | WGANGP |
For more information, see the following paper: More... | |
Typedefs | |
using | XavierInitialization = GlorotInitializationType< true > |
XavierInitilization is the popular name for this method. | |
using | GlorotInitialization = GlorotInitializationType< false > |
GlorotInitialization uses uniform distribution. | |
template<class ActivationFunction = LogisticFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | SigmoidLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard Sigmoid-Layer using the logistic activation function. | |
template<class ActivationFunction = IdentityFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | IdentityLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard Identity-Layer using the identity activation function. | |
template<class ActivationFunction = RectifierFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | ReLULayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard rectified linear unit non-linearity layer. | |
template<class ActivationFunction = TanhFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | TanHLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard hyperbolic tangent layer. | |
template<class ActivationFunction = SoftplusFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | SoftPlusLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard Softplus-Layer using the Softplus activation function. | |
template<class ActivationFunction = HardSigmoidFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | HardSigmoidLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard HardSigmoid-Layer using the HardSigmoid activation function. | |
template<class ActivationFunction = SwishFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | SwishFunctionLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard Swish-Layer using the Swish activation function. | |
template<class ActivationFunction = MishFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | MishFunctionLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard Mish-Layer using the Mish activation function. | |
template<class ActivationFunction = LiSHTFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | LiSHTFunctionLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard LiSHT-Layer using the LiSHT activation function. | |
template<class ActivationFunction = GELUFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | GELUFunctionLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard GELU-Layer using the GELU activation function. | |
template<class ActivationFunction = ElliotFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | ElliotFunctionLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard Elliot-Layer using the Elliot activation function. | |
template<class ActivationFunction = ElishFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | ElishFunctionLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard ELiSH-Layer using the ELiSH activation function. | |
template<class ActivationFunction = GaussianFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | GaussianFunctionLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard Gaussian-Layer using the Gaussian activation function. | |
template<class ActivationFunction = HardSwishFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | HardSwishFunctionLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard HardSwish-Layer using the HardSwish activation function. | |
template<class ActivationFunction = TanhExpFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | TanhExpFunctionLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard TanhExp-Layer using the TanhExp activation function. | |
template<class ActivationFunction = SILUFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | SILUFunctionLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard SILU-Layer using the SILU activation function. | |
using | SELU = ELU< arma::mat, arma::mat > |
using | MoreTypes = boost::variant< FlexibleReLU< arma::mat, arma::mat > *, Linear3D< arma::mat, arma::mat, NoRegularizer > *, LpPooling< arma::mat, arma::mat > *, PixelShuffle< arma::mat, arma::mat > *, ChannelShuffle< arma::mat, arma::mat > *, Glimpse< arma::mat, arma::mat > *, Highway< arma::mat, arma::mat > *, MultiheadAttention< arma::mat, arma::mat, NoRegularizer > *, Recurrent< arma::mat, arma::mat > *, RecurrentAttention< arma::mat, arma::mat > *, ReinforceNormal< arma::mat, arma::mat > *, ReLU6< arma::mat, arma::mat > *, Reparametrization< arma::mat, arma::mat > *, Select< arma::mat, arma::mat > *, SpatialDropout< arma::mat, arma::mat > *, Subview< arma::mat, arma::mat > *, VRClassReward< arma::mat, arma::mat > *, VirtualBatchNorm< arma::mat, arma::mat > *, RBF< arma::mat, arma::mat, GaussianFunction > *, BaseLayer< GaussianFunction, arma::mat, arma::mat > *, PositionalEncoding< arma::mat, arma::mat > *, ISRLU< arma::mat, arma::mat > *, NearestInterpolation< arma::mat, arma::mat > *> |
template<typename... CustomLayers> | |
using | LayerTypes = boost::variant< AdaptiveMaxPooling< arma::mat, arma::mat > *, AdaptiveMeanPooling< arma::mat, arma::mat > *, Add< arma::mat, arma::mat > *, AddMerge< arma::mat, arma::mat > *, AlphaDropout< arma::mat, arma::mat > *, AtrousConvolution< NaiveConvolution< ValidConvolution >, NaiveConvolution< FullConvolution >, NaiveConvolution< ValidConvolution >, arma::mat, arma::mat > *, BaseLayer< LogisticFunction, arma::mat, arma::mat > *, BaseLayer< IdentityFunction, arma::mat, arma::mat > *, BaseLayer< TanhFunction, arma::mat, arma::mat > *, BaseLayer< SoftplusFunction, arma::mat, arma::mat > *, BaseLayer< RectifierFunction, arma::mat, arma::mat > *, BatchNorm< arma::mat, arma::mat > *, BilinearInterpolation< arma::mat, arma::mat > *, CELU< arma::mat, arma::mat > *, Concat< arma::mat, arma::mat > *, Concatenate< arma::mat, arma::mat > *, ConcatPerformance< NegativeLogLikelihood< arma::mat, arma::mat >, arma::mat, arma::mat > *, Constant< arma::mat, arma::mat > *, Convolution< NaiveConvolution< ValidConvolution >, NaiveConvolution< FullConvolution >, NaiveConvolution< ValidConvolution >, arma::mat, arma::mat > *, CReLU< arma::mat, arma::mat > *, DropConnect< arma::mat, arma::mat > *, Dropout< arma::mat, arma::mat > *, ELU< arma::mat, arma::mat > *, FastLSTM< arma::mat, arma::mat > *, GRU< arma::mat, arma::mat > *, HardTanH< arma::mat, arma::mat > *, Join< arma::mat, arma::mat > *, LayerNorm< arma::mat, arma::mat > *, LeakyReLU< arma::mat, arma::mat > *, Linear< arma::mat, arma::mat, NoRegularizer > *, LinearNoBias< arma::mat, arma::mat, NoRegularizer > *, LogSoftMax< arma::mat, arma::mat > *, Lookup< arma::mat, arma::mat > *, LSTM< arma::mat, arma::mat > *, MaxPooling< arma::mat, arma::mat > *, MeanPooling< arma::mat, arma::mat > *, MiniBatchDiscrimination< arma::mat, arma::mat > *, MultiplyConstant< arma::mat, arma::mat > *, MultiplyMerge< arma::mat, arma::mat > *, NegativeLogLikelihood< arma::mat, arma::mat > *, NoisyLinear< arma::mat, arma::mat > *, Padding< arma::mat, arma::mat > *, PReLU< arma::mat, arma::mat > *, Sequential< arma::mat, arma::mat, false > *, Sequential< arma::mat, arma::mat, true > *, Softmax< arma::mat, arma::mat > *, TransposedConvolution< NaiveConvolution< ValidConvolution >, NaiveConvolution< ValidConvolution >, NaiveConvolution< ValidConvolution >, arma::mat, arma::mat > *, WeightNorm< arma::mat, arma::mat > *, MoreTypes, CustomLayers *... > |
template<typename MatType = arma::mat> | |
using | Embedding = Lookup< MatType, MatType > |
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat, typename... CustomLayers> | |
using | Residual = Sequential< InputDataType, OutputDataType, true, CustomLayers... > |
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | CrossEntropyError = BCELoss< InputDataType, OutputDataType > |
Adding alias of BCELoss. | |
typedef LRegularizer< 1 > | L1Regularizer |
The L1 Regularizer. | |
typedef LRegularizer< 2 > | L2Regularizer |
The L2 Regularizer. | |
template<class ActivationFunction = LogisticFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> | |
using | CustomLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
Standard Sigmoid layer. | |
Functions | |
template<typename ModelType > | |
double | InceptionScore (ModelType Model, arma::mat images, size_t splits=1) |
Function that computes Inception Score for a set of images produced by a GAN. More... | |
HAS_MEM_FUNC (Gradient, HasGradientCheck) | |
HAS_MEM_FUNC (Deterministic, HasDeterministicCheck) | |
HAS_MEM_FUNC (Parameters, HasParametersCheck) | |
HAS_MEM_FUNC (Add, HasAddCheck) | |
HAS_ANY_METHOD_FORM (Model, HasModelCheck) | |
HAS_MEM_FUNC (Location, HasLocationCheck) | |
HAS_MEM_FUNC (Reset, HasResetCheck) | |
HAS_MEM_FUNC (ResetCell, HasResetCellCheck) | |
HAS_MEM_FUNC (Reward, HasRewardCheck) | |
HAS_MEM_FUNC (InputWidth, HasInputWidth) | |
HAS_MEM_FUNC (InputHeight, HasInputHeight) | |
HAS_MEM_FUNC (Rho, HasRho) | |
HAS_MEM_FUNC (Loss, HasLoss) | |
HAS_MEM_FUNC (Run, HasRunCheck) | |
HAS_MEM_FUNC (Bias, HasBiasCheck) | |
HAS_MEM_FUNC (MaxIterations, HasMaxIterations) | |
HAS_ANY_METHOD_FORM (InputShape, HasInputShapeCheck) | |
template<typename T > | |
void | CheckInputShape (const T &network, const size_t inputShape, const std::string &functionName) |
Artificial Neural Network.
Artificial neural networks.
Artifical Neural Network.
double mlpack::ann::InceptionScore | ( | ModelType | Model, |
arma::mat | images, | ||
size_t | splits = 1 |
||
) |
Function that computes Inception Score for a set of images produced by a GAN.
For more information, see the following.
Model | Model for evaluating the quality of images. |
images | Images generated by GAN. |
splits | Number of splits to perform (default: 1). |