The binary-cross-entropy performance function measures the Binary Cross Entropy between the target and the output.
More...
#include <binary_cross_entropy_loss.hpp>
|
| | BCELoss (const double eps=1e-10, const bool reduction=true) |
| | Create the BinaryCrossEntropyLoss object. More...
|
| |
| template<typename PredictionType , typename TargetType > |
| PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| | Computes the cross-entropy function. More...
|
| |
| template<typename PredictionType , typename TargetType , typename LossType > |
| void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| | Ordinary feed backward pass of a neural network. More...
|
| |
|
OutputDataType & | OutputParameter () const |
| | Get the output parameter.
|
| |
|
OutputDataType & | OutputParameter () |
| | Modify the output parameter.
|
| |
|
double | Eps () const |
| | Get the epsilon.
|
| |
|
double & | Eps () |
| | Modify the epsilon.
|
| |
|
bool | Reduction () const |
| | Get the reduction.
|
| |
|
bool & | Reduction () |
| | Set the reduction.
|
| |
|
template<typename Archive > |
| void | serialize (Archive &ar, const uint32_t) |
| | Serialize the layer.
|
| |
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::BCELoss< InputDataType, OutputDataType >
The binary-cross-entropy performance function measures the Binary Cross Entropy between the target and the output.
- Template Parameters
-
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
◆ BCELoss()
template<typename InputDataType , typename OutputDataType >
Create the BinaryCrossEntropyLoss object.
- Parameters
-
| eps | The minimum value used for computing logarithms and denominators in a numerically stable way. |
| reduction | Reduction type. If true, it returns the mean of the loss. Else, it returns the sum. |
◆ Backward()
template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType , typename LossType >
| void mlpack::ann::BCELoss< InputDataType, OutputDataType >::Backward |
( |
const PredictionType & |
prediction, |
|
|
const TargetType & |
target, |
|
|
LossType & |
loss |
|
) |
| |
Ordinary feed backward pass of a neural network.
- Parameters
-
| prediction | Predictions used for evaluating the specified loss function. |
| target | The target vector. |
| loss | The calculated error. |
◆ Forward()
template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType >
| PredictionType::elem_type mlpack::ann::BCELoss< InputDataType, OutputDataType >::Forward |
( |
const PredictionType & |
prediction, |
|
|
const TargetType & |
target |
|
) |
| |
Computes the cross-entropy function.
- Parameters
-
| prediction | Predictions used for evaluating the specified loss function. |
| target | The target vector. |
The documentation for this class was generated from the following files: