mlpack
|
Implementation of the concat performance class. More...
#include <concat_performance.hpp>
Public Member Functions | |
ConcatPerformance (const size_t inSize=0, OutputLayerType &&outputLayer=OutputLayerType()) | |
Create the ConcatPerformance object. More... | |
template<typename eT > | |
double | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &target) |
template<typename eT > | |
void | Backward (const arma::Mat< eT > &input, const arma::Mat< eT > &target, arma::Mat< eT > &output) |
Ordinary feed backward pass of a neural network. More... | |
OutputDataType & | OutputParameter () const |
Get the output parameter. | |
OutputDataType & | OutputParameter () |
Modify the output parameter. | |
OutputDataType & | Delta () const |
Get the delta. | |
OutputDataType & | Delta () |
Modify the delta. | |
size_t | InSize () const |
Get the number of inputs. | |
template<typename Archive > | |
void | serialize (Archive &, const uint32_t) |
Serialize the layer. | |
Implementation of the concat performance class.
The class works as a feed-forward fully connected network container which plugs performance layers together.
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
mlpack::ann::ConcatPerformance< OutputLayerType, InputDataType, OutputDataType >::ConcatPerformance | ( | const size_t | inSize = 0 , |
OutputLayerType && | outputLayer = OutputLayerType() |
||
) |
Create the ConcatPerformance object.
inSize | The number of inputs. |
outputLayer | Output layer used to evaluate the network. |
void mlpack::ann::ConcatPerformance< OutputLayerType, InputDataType, OutputDataType >::Backward | ( | const arma::Mat< eT > & | input, |
const arma::Mat< eT > & | target, | ||
arma::Mat< eT > & | output | ||
) |
Ordinary feed backward pass of a neural network.
The negative log likelihood layer expectes that the input contains log-probabilities for each class. The layer also expects a class index, in the range between 1 and the number of classes, as target when calling the Forward function.
input | The propagated input activation. |
target | The target vector, that contains the class index in the range between 1 and the number of classes. |
output | The calculated error. |