|
mlpack
|
Implementation of the concat performance class. More...
#include <concat_performance.hpp>
Public Member Functions | |
| ConcatPerformance (const size_t inSize=0, OutputLayerType &&outputLayer=OutputLayerType()) | |
| Create the ConcatPerformance object. More... | |
| template<typename eT > | |
| double | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &target) |
| template<typename eT > | |
| void | Backward (const arma::Mat< eT > &input, const arma::Mat< eT > &target, arma::Mat< eT > &output) |
| Ordinary feed backward pass of a neural network. More... | |
| OutputDataType & | OutputParameter () const |
| Get the output parameter. | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. | |
| OutputDataType & | Delta () const |
| Get the delta. | |
| OutputDataType & | Delta () |
| Modify the delta. | |
| size_t | InSize () const |
| Get the number of inputs. | |
| template<typename Archive > | |
| void | serialize (Archive &, const uint32_t) |
| Serialize the layer. | |
Implementation of the concat performance class.
The class works as a feed-forward fully connected network container which plugs performance layers together.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| mlpack::ann::ConcatPerformance< OutputLayerType, InputDataType, OutputDataType >::ConcatPerformance | ( | const size_t | inSize = 0, |
| OutputLayerType && | outputLayer = OutputLayerType() |
||
| ) |
Create the ConcatPerformance object.
| inSize | The number of inputs. |
| outputLayer | Output layer used to evaluate the network. |
| void mlpack::ann::ConcatPerformance< OutputLayerType, InputDataType, OutputDataType >::Backward | ( | const arma::Mat< eT > & | input, |
| const arma::Mat< eT > & | target, | ||
| arma::Mat< eT > & | output | ||
| ) |
Ordinary feed backward pass of a neural network.
The negative log likelihood layer expectes that the input contains log-probabilities for each class. The layer also expects a class index, in the range between 1 and the number of classes, as target when calling the Forward function.
| input | The propagated input activation. |
| target | The target vector, that contains the class index in the range between 1 and the number of classes. |
| output | The calculated error. |
1.8.13