|
mlpack
|
Implementation of the constant layer. More...
#include <constant.hpp>
Public Member Functions | |
| Constant (const size_t outSize=0, const double scalar=0.0) | |
| Create the Constant object that outputs a given constant scalar value given any input value. More... | |
| template<typename InputType , typename OutputType > | |
| void | Forward (const InputType &input, OutputType &output) |
| Ordinary feed forward pass of a neural network. More... | |
| template<typename DataType > | |
| void | Backward (const DataType &, const DataType &, DataType &g) |
| Ordinary feed backward pass of a neural network. More... | |
| OutputDataType & | OutputParameter () const |
| Get the output parameter. | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. | |
| OutputDataType & | Delta () const |
| Get the delta. | |
| OutputDataType & | Delta () |
| Modify the delta. | |
| size_t | OutSize () const |
| Get the output size. | |
| size_t | WeightSize () const |
| Get the size of the weights. | |
| template<typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. | |
Implementation of the constant layer.
The constant layer outputs a given constant value given any input value.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| mlpack::ann::Constant< InputDataType, OutputDataType >::Constant | ( | const size_t | outSize = 0, |
| const double | scalar = 0.0 |
||
| ) |
Create the Constant object that outputs a given constant scalar value given any input value.
| outSize | The number of output units. |
| scalar | The constant value used to create the constant output. |
| void mlpack::ann::Constant< InputDataType, OutputDataType >::Backward | ( | const DataType & | , |
| const DataType & | , | ||
| DataType & | g | ||
| ) |
Ordinary feed backward pass of a neural network.
The backward pass of the constant layer is returns always a zero output error matrix.
| * | (input) The propagated input activation. |
| * | (gy) The backpropagated error. |
| g | The calculated gradient. |
| void mlpack::ann::Constant< InputDataType, OutputDataType >::Forward | ( | const InputType & | input, |
| OutputType & | output | ||
| ) |
Ordinary feed forward pass of a neural network.
The forward pass fills the output with the specified constant parameter.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
1.8.13