The dice loss performance function measures the network's performance according to the dice coefficient between the input and target distributions.
More...
|
| | DiceLoss (const double smooth=1) |
| | Create the DiceLoss object. More...
|
| |
| template<typename PredictionType , typename TargetType > |
| PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| | Computes the dice loss function. More...
|
| |
| template<typename PredictionType , typename TargetType , typename LossType > |
| void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| | Ordinary feed backward pass of a neural network. More...
|
| |
|
OutputDataType & | OutputParameter () const |
| | Get the output parameter.
|
| |
|
OutputDataType & | OutputParameter () |
| | Modify the output parameter.
|
| |
|
double | Smooth () const |
| | Get the smooth.
|
| |
|
double & | Smooth () |
| | Modify the smooth.
|
| |
|
template<typename Archive > |
| void | serialize (Archive &ar, const uint32_t) |
| | Serialize the layer.
|
| |
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::DiceLoss< InputDataType, OutputDataType >
The dice loss performance function measures the network's performance according to the dice coefficient between the input and target distributions.
For more information see the following.
@article{Milletari2016,
author = {Fausto Milletari and Nassir Navab and Seyed{-}Ahmad Ahmadi},
title = {V-Net: Fully Convolutional Neural Networks for
Volumetric Medical Image Segmentation},
journal = {CoRR},
volume = {abs/1606.04797},
year = {2016},
url = {http:
archivePrefix = {arXiv},
eprint = {1606.04797},
}
- Template Parameters
-
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |