mlpack
Public Member Functions | List of all members
mlpack::ann::FlexibleReLU< InputDataType, OutputDataType > Class Template Reference

The FlexibleReLU activation function, defined by. More...

#include <flexible_relu.hpp>

Public Member Functions

 FlexibleReLU (const double alpha=0)
 Create the FlexibleReLU object using the specified parameters. More...
 
void Reset ()
 Reset the layer parameter. More...
 
template<typename InputType , typename OutputType >
void Forward (const InputType &input, OutputType &output)
 Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
 
template<typename DataType >
void Backward (const DataType &input, const DataType &gy, DataType &g)
 Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More...
 
template<typename eT >
void Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &error, arma::Mat< eT > &gradient)
 Calculate the gradient using the output delta and the input activation. More...
 
OutputDataType const & Parameters () const
 Get the parameters.
 
OutputDataType & Parameters ()
 Modify the parameters.
 
OutputDataType const & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
OutputDataType const & Delta () const
 Get the delta.
 
OutputDataType & Delta ()
 Modify the delta.
 
OutputDataType const & Gradient () const
 Get the gradient.
 
OutputDataType & Gradient ()
 Modify the gradient.
 
double const & Alpha () const
 Get the parameter controlling the range of the relu function.
 
double & Alpha ()
 Modify the parameter controlling the range of the relu function.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::FlexibleReLU< InputDataType, OutputDataType >

The FlexibleReLU activation function, defined by.

\begin{eqnarray*} f(x) &=& \max(0,x)+alpha \\ f'(x) &=& \left\{ \begin{array}{lr} 1 & : x > 0 \\ 0 & : x \le 0 \end{array} \right. \end{eqnarray*}

For more information, read the following paper:

@article{Qiu2018,
author = {Suo Qiu, Xiangmin Xu and Bolun Cai},
title = {FReLU: Flexible Rectified Linear Units for Improving
Convolutional Neural Networks}
journal = {arxiv preprint},
URL = {https://arxiv.org/abs/1706.08098},
year = {2018}
}
Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mar, arma::sp_mat or arma::cube)
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube)

Constructor & Destructor Documentation

◆ FlexibleReLU()

template<typename InputDataType , typename OutputDataType >
mlpack::ann::FlexibleReLU< InputDataType, OutputDataType >::FlexibleReLU ( const double  alpha = 0)

Create the FlexibleReLU object using the specified parameters.

The non zero parameter can be adjusted by specifying the parameter alpha which controls the range of the relu function. (Default alpha = 0) This parameter is trainable.

Parameters
alphaParameter for adjusting the range of the relu function.

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename DataType >
void mlpack::ann::FlexibleReLU< InputDataType, OutputDataType >::Backward ( const DataType &  input,
const DataType &  gy,
DataType &  g 
)

Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.

Using the results from the feed forward pass.

Parameters
inputThe propagated input activation.
gyThe backpropagated error.
gThe calculated gradient.

Compute the first derivative of FlexibleReLU function.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename InputType , typename OutputType >
void mlpack::ann::FlexibleReLU< InputDataType, OutputDataType >::Forward ( const InputType &  input,
OutputType &  output 
)

Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.

Parameters
inputInput data used for evaluating the specified function.
outputResulting output activation.

◆ Gradient()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::FlexibleReLU< InputDataType, OutputDataType >::Gradient ( const arma::Mat< eT > &  input,
const arma::Mat< eT > &  error,
arma::Mat< eT > &  gradient 
)

Calculate the gradient using the output delta and the input activation.

Parameters
inputThe input parameter used for calculating the gradient.
errorThe calculated error.
gradientThe calculated gradient.

◆ Reset()

template<typename InputDataType , typename OutputDataType >
void mlpack::ann::FlexibleReLU< InputDataType, OutputDataType >::Reset ( )

Reset the layer parameter.

Set value of alpha to the one given by user.


The documentation for this class was generated from the following files: