|
mlpack
|
Hard Shrink operator is defined as,. More...
#include <hardshrink.hpp>
Public Member Functions | |
| HardShrink (const double lambda=0.5) | |
| Create HardShrink object using specified hyperparameter lambda. More... | |
| template<typename InputType , typename OutputType > | |
| void | Forward (const InputType &input, OutputType &output) |
| Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
| template<typename DataType > | |
| void | Backward (const DataType &input, DataType &gy, DataType &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More... | |
| OutputDataType const & | OutputParameter () const |
| Get the output parameter. | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. | |
| OutputDataType const & | Delta () const |
| Get the delta. | |
| OutputDataType & | Delta () |
| Modify the delta. | |
| double const & | Lambda () const |
| Get the hyperparameter lambda. | |
| double & | Lambda () |
| Modify the hyperparameter lambda. | |
| template<typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. | |
Hard Shrink operator is defined as,.
\begin{eqnarray*} f(x) &=& \begin{cases} x & : x > lambda \\ x & : x < -lambda \\ 0 & : otherwise. \end{cases} \\ f'(x) &=& \begin{cases} 1 & : x > lambda \\ 1 & : x < -lambda \\ 0 & : otherwise. \end{cases} \end{eqnarray*}
\(\lambda\) is set to 0.5 by default.
| mlpack::ann::HardShrink< InputDataType, OutputDataType >::HardShrink | ( | const double | lambda = 0.5 | ) |
Create HardShrink object using specified hyperparameter lambda.
| lambda | Is calculated by multiplying the noise level sigma of the input(noisy image) and a coefficient 'a' which is one of the training parameters. Default value of lambda is 0.5. |
| void mlpack::ann::HardShrink< InputDataType, OutputDataType >::Backward | ( | const DataType & | input, |
| DataType & | gy, | ||
| DataType & | g | ||
| ) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed forward pass.
| input | The propagated input activation f(x). |
| gy | The backpropagated error. |
| g | The calculated gradient. |
| void mlpack::ann::HardShrink< InputDataType, OutputDataType >::Forward | ( | const InputType & | input, |
| OutputType & | output | ||
| ) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the Hard Shrink function. |
| output | Resulting output activation. |
1.8.13