|
| | HingeLoss (const bool reduction=true) |
| | Create HingeLoss object. More...
|
| |
| template<typename PredictionType , typename TargetType > |
| PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| | Computes the Hinge loss function. More...
|
| |
| template<typename PredictionType , typename TargetType , typename LossType > |
| void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| | Ordinary feed backward pass of a neural network. More...
|
| |
|
OutputDataType & | OutputParameter () const |
| | Get the output parameter.
|
| |
|
OutputDataType & | OutputParameter () |
| | Modify the output parameter.
|
| |
|
bool | Reduction () const |
| | Get the type of reduction used.
|
| |
|
bool & | Reduction () |
| | Modify the type of reduction used.
|
| |
|
template<typename Archive > |
| void | serialize (Archive &ar, const uint32_t) |
| | Serialize the layer.
|
| |
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::HingeLoss< InputDataType, OutputDataType >
Computes the hinge loss between \(y_true\) and \(y_pred\).
Expects \(y_true\) to be either -1 or 1. If \(y_true\) is either 0 or 1, a temporary conversion is made to calculate the loss. The hinge loss \(l(y_true, y_pred)\) is defined as \(l(y_true, y_pred) = max(0, 1 - y_true*y_pred)\).
- Template Parameters
-
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |