The Kullback–Leibler divergence is often used for continuous distributions (direct regression).
More...
|
| KLDivergence (const bool takeMean=false) |
| Create the Kullback–Leibler Divergence object with the specified parameters. More...
|
|
template<typename PredictionType , typename TargetType > |
PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| Computes the Kullback–Leibler divergence error function. More...
|
|
template<typename PredictionType , typename TargetType , typename LossType > |
void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| Ordinary feed backward pass of a neural network. More...
|
|
OutputDataType & | OutputParameter () const |
| Get the output parameter.
|
|
OutputDataType & | OutputParameter () |
| Modify the output parameter.
|
|
bool | TakeMean () const |
| Get the value of takeMean.
|
|
bool & | TakeMean () |
| Modify the value of takeMean.
|
|
template<typename Archive > |
void | serialize (Archive &ar, const uint32_t) |
| Serialize the loss function.
|
|
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::KLDivergence< InputDataType, OutputDataType >
The Kullback–Leibler divergence is often used for continuous distributions (direct regression).
For more information, see the following paper.
article{Kullback1951,
title = {On Information and Sufficiency},
author = {S. Kullback, R.A. Leibler},
journal = {The Annals of Mathematical Statistics},
year = {1951}
}
- Template Parameters
-
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |