The L1 loss is a loss function that measures the mean absolute error (MAE) between each element in the input x and target y.
More...
#include <l1_loss.hpp>
|
| L1Loss (const bool mean=true) |
| Create the L1Loss object. More...
|
|
template<typename PredictionType , typename TargetType > |
PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| Computes the L1 Loss function. More...
|
|
template<typename PredictionType , typename TargetType , typename LossType > |
void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| Ordinary feed backward pass of a neural network. More...
|
|
OutputDataType & | OutputParameter () const |
| Get the output parameter.
|
|
OutputDataType & | OutputParameter () |
| Modify the output parameter.
|
|
bool | Mean () const |
| Get the value of reduction type.
|
|
bool & | Mean () |
| Set the value of reduction type.
|
|
template<typename Archive > |
void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer.
|
|
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::L1Loss< InputDataType, OutputDataType >
The L1 loss is a loss function that measures the mean absolute error (MAE) between each element in the input x and target y.
- Template Parameters
-
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
◆ L1Loss()
template<typename InputDataType , typename OutputDataType >
Create the L1Loss object.
- Parameters
-
mean | Reduction type. If true, it returns the mean of the loss. Else, it returns the sum. |
◆ Backward()
template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType , typename LossType >
void mlpack::ann::L1Loss< InputDataType, OutputDataType >::Backward |
( |
const PredictionType & |
prediction, |
|
|
const TargetType & |
target, |
|
|
LossType & |
loss |
|
) |
| |
Ordinary feed backward pass of a neural network.
- Parameters
-
prediction | Predictions used for evaluating the specified loss function. |
target | The target vector. |
loss | The calculated error. |
◆ Forward()
template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType >
PredictionType::elem_type mlpack::ann::L1Loss< InputDataType, OutputDataType >::Forward |
( |
const PredictionType & |
prediction, |
|
|
const TargetType & |
target |
|
) |
| |
Computes the L1 Loss function.
- Parameters
-
prediction | Predictions used for evaluating the specified loss function. |
target | The target vector. |
The documentation for this class was generated from the following files: