mlpack
Public Member Functions | List of all members
mlpack::ann::L1Loss< InputDataType, OutputDataType > Class Template Reference

The L1 loss is a loss function that measures the mean absolute error (MAE) between each element in the input x and target y. More...

#include <l1_loss.hpp>

Public Member Functions

 L1Loss (const bool mean=true)
 Create the L1Loss object. More...
 
template<typename PredictionType , typename TargetType >
PredictionType::elem_type Forward (const PredictionType &prediction, const TargetType &target)
 Computes the L1 Loss function. More...
 
template<typename PredictionType , typename TargetType , typename LossType >
void Backward (const PredictionType &prediction, const TargetType &target, LossType &loss)
 Ordinary feed backward pass of a neural network. More...
 
OutputDataType & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
bool Mean () const
 Get the value of reduction type.
 
bool & Mean ()
 Set the value of reduction type.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::L1Loss< InputDataType, OutputDataType >

The L1 loss is a loss function that measures the mean absolute error (MAE) between each element in the input x and target y.

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Constructor & Destructor Documentation

◆ L1Loss()

template<typename InputDataType , typename OutputDataType >
mlpack::ann::L1Loss< InputDataType, OutputDataType >::L1Loss ( const bool  mean = true)

Create the L1Loss object.

Parameters
meanReduction type. If true, it returns the mean of the loss. Else, it returns the sum.

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType , typename LossType >
void mlpack::ann::L1Loss< InputDataType, OutputDataType >::Backward ( const PredictionType &  prediction,
const TargetType &  target,
LossType &  loss 
)

Ordinary feed backward pass of a neural network.

Parameters
predictionPredictions used for evaluating the specified loss function.
targetThe target vector.
lossThe calculated error.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType >
PredictionType::elem_type mlpack::ann::L1Loss< InputDataType, OutputDataType >::Forward ( const PredictionType &  prediction,
const TargetType &  target 
)

Computes the L1 Loss function.

Parameters
predictionPredictions used for evaluating the specified loss function.
targetThe target vector.

The documentation for this class was generated from the following files: