mlpack
Public Member Functions | List of all members
mlpack::ann::LeakyReLU< InputDataType, OutputDataType > Class Template Reference

The LeakyReLU activation function, defined by. More...

#include <leaky_relu.hpp>

Public Member Functions

 LeakyReLU (const double alpha=0.03)
 Create the LeakyReLU object using the specified parameters. More...
 
template<typename InputType , typename OutputType >
void Forward (const InputType &input, OutputType &output)
 Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
 
template<typename DataType >
void Backward (const DataType &input, const DataType &gy, DataType &g)
 Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More...
 
OutputDataType const & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
OutputDataType const & Delta () const
 Get the delta.
 
OutputDataType & Delta ()
 Modify the delta.
 
double const & Alpha () const
 Get the non zero gradient.
 
double & Alpha ()
 Modify the non zero gradient.
 
size_t WeightSize () const
 Get size of weights.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::LeakyReLU< InputDataType, OutputDataType >

The LeakyReLU activation function, defined by.

\begin{eqnarray*} f(x) &=& \max(x, alpha*x) \\ f'(x) &=& \left\{ \begin{array}{lr} 1 & : x > 0 \\ alpha & : x \le 0 \end{array} \right. \end{eqnarray*}

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Constructor & Destructor Documentation

◆ LeakyReLU()

template<typename InputDataType , typename OutputDataType >
mlpack::ann::LeakyReLU< InputDataType, OutputDataType >::LeakyReLU ( const double  alpha = 0.03)

Create the LeakyReLU object using the specified parameters.

The non zero gradient can be adjusted by specifying the parameter alpha in the range 0 to 1. Default (alpha = 0.03)

Parameters
alphaNon zero gradient

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename DataType >
void mlpack::ann::LeakyReLU< InputDataType, OutputDataType >::Backward ( const DataType &  input,
const DataType &  gy,
DataType &  g 
)

Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.

Using the results from the feed forward pass.

Parameters
inputThe propagated input activation.
gyThe backpropagated error.
gThe calculated gradient.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename InputType , typename OutputType >
void mlpack::ann::LeakyReLU< InputDataType, OutputDataType >::Forward ( const InputType &  input,
OutputType &  output 
)

Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.

Parameters
inputInput data used for evaluating the specified function.
outputResulting output activation.

The documentation for this class was generated from the following files: