|
mlpack
|
Implementation of the Linear3D layer class. More...
#include <linear3d.hpp>
Public Member Functions | |
| Linear3D () | |
| Create the Linear3D object. | |
| Linear3D (const size_t inSize, const size_t outSize, RegularizerType regularizer=RegularizerType()) | |
| Create the Linear3D layer object using the specified number of units. More... | |
| Linear3D (const Linear3D &layer) | |
| Copy constructor. | |
| Linear3D (Linear3D &&) | |
| Move constructor. | |
| Linear3D & | operator= (const Linear3D &layer) |
| Copy assignment operator. | |
| Linear3D & | operator= (Linear3D &&layer) |
| Move assignment operator. | |
| void | Reset () |
| template<typename eT > | |
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
| template<typename eT > | |
| void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
| template<typename eT > | |
| void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &error, arma::Mat< eT > &gradient) |
| OutputDataType const & | Parameters () const |
| Get the parameters. | |
| OutputDataType & | Parameters () |
| Modify the parameters. | |
| InputDataType const & | InputParameter () const |
| Get the input parameter. | |
| InputDataType & | InputParameter () |
| Modify the input parameter. | |
| OutputDataType const & | OutputParameter () const |
| Get the output parameter. | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. | |
| OutputDataType const & | Delta () const |
| Get the delta. | |
| OutputDataType & | Delta () |
| Modify the delta. | |
| size_t | InputSize () const |
| Get the input size. | |
| size_t | OutputSize () const |
| Get the output size. | |
| OutputDataType const & | Gradient () const |
| Get the gradient. | |
| OutputDataType & | Gradient () |
| Modify the gradient. | |
| OutputDataType const & | Weight () const |
| Get the weight of the layer. | |
| OutputDataType & | Weight () |
| Modify the weight of the layer. | |
| OutputDataType const & | Bias () const |
| Get the bias of the layer. | |
| OutputDataType & | Bias () |
| Modify the bias weights of the layer. | |
| size_t | InputShape () const |
| Get the shape of the input. | |
| template<typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. | |
Implementation of the Linear3D layer class.
The Linear class represents a single layer of a neural network.
Shape of input : (inSize * nPoints, batchSize) Shape of output : (outSize * nPoints, batchSize)
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| mlpack::ann::Linear3D< InputDataType, OutputDataType, RegularizerType >::Linear3D | ( | const size_t | inSize, |
| const size_t | outSize, | ||
| RegularizerType | regularizer = RegularizerType() |
||
| ) |
Create the Linear3D layer object using the specified number of units.
| inSize | The number of input units. |
| outSize | The number of output units. |
| regularizer | The regularizer to use, optional. |
| void mlpack::ann::Linear3D< InputDataType, OutputDataType, RegularizerType >::Backward | ( | const arma::Mat< eT > & | , |
| const arma::Mat< eT > & | gy, | ||
| arma::Mat< eT > & | g | ||
| ) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
| * | (input) The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
| void mlpack::ann::Linear3D< InputDataType, OutputDataType, RegularizerType >::Forward | ( | const arma::Mat< eT > & | input, |
| arma::Mat< eT > & | output | ||
| ) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
1.8.13