|
mlpack
|
The Lookup class stores word embeddings and retrieves them using tokens. More...
#include <lookup.hpp>
Public Member Functions | |
| Lookup (const size_t vocabSize=0, const size_t embeddingSize=0) | |
| Create the Lookup object using the specified vocabulary and embedding size. More... | |
| template<typename eT > | |
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
| template<typename eT > | |
| void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
| template<typename eT > | |
| void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &error, arma::Mat< eT > &gradient) |
| Calculate the gradient using the output delta and the input activation. More... | |
| OutputDataType const & | Parameters () const |
| Get the parameters. | |
| OutputDataType & | Parameters () |
| Modify the parameters. | |
| OutputDataType const & | OutputParameter () const |
| Get the output parameter. | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. | |
| OutputDataType const & | Delta () const |
| Get the delta. | |
| OutputDataType & | Delta () |
| Modify the delta. | |
| OutputDataType const & | Gradient () const |
| Get the gradient. | |
| OutputDataType & | Gradient () |
| Modify the gradient. | |
| size_t | VocabSize () const |
| Get the size of the vocabulary. | |
| size_t | EmbeddingSize () const |
| Get the length of each embedding vector. | |
| template<typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. | |
The Lookup class stores word embeddings and retrieves them using tokens.
The Lookup layer is always the first layer of the network. The input to the Lookup class is a matrix of shape (sequenceLength, batchSize). The matrix consists of tokens which are used to lookup the table (i.e. weights) to find the embeddings of those tokens.
The input shape : (sequenceLength, batchSize). The output shape : (embeddingSize, sequenceLength, batchSize).
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| mlpack::ann::Lookup< InputDataType, OutputDataType >::Lookup | ( | const size_t | vocabSize = 0, |
| const size_t | embeddingSize = 0 |
||
| ) |
Create the Lookup object using the specified vocabulary and embedding size.
| vocabSize | The size of the vocabulary. |
| embeddingSize | The length of each embedding vector. |
| void mlpack::ann::Lookup< InputDataType, OutputDataType >::Backward | ( | const arma::Mat< eT > & | , |
| const arma::Mat< eT > & | gy, | ||
| arma::Mat< eT > & | g | ||
| ) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
| * | (input) The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
| void mlpack::ann::Lookup< InputDataType, OutputDataType >::Forward | ( | const arma::Mat< eT > & | input, |
| arma::Mat< eT > & | output | ||
| ) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
| void mlpack::ann::Lookup< InputDataType, OutputDataType >::Gradient | ( | const arma::Mat< eT > & | input, |
| const arma::Mat< eT > & | error, | ||
| arma::Mat< eT > & | gradient | ||
| ) |
Calculate the gradient using the output delta and the input activation.
| input | The input parameter used for calculating the gradient. |
| error | The calculated error. |
| gradient | The calculated gradient. |
1.8.13