Implementation of the LPPooling.
More...
#include <lp_pooling.hpp>
|
|
| LpPooling () |
| | Create the LpPooling object.
|
| |
| | LpPooling (const size_t normType, const size_t kernelWidth, const size_t kernelHeight, const size_t strideWidth=1, const size_t strideHeight=1, const bool floor=true) |
| | Create the LpPooling object using the specified number of units. More...
|
| |
| template<typename eT > |
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| | Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
|
| |
| template<typename eT > |
| void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| | Ordinary feed backward pass of a neural network, using 3rd-order tensors as input, calculating the function f(x) by propagating x backwards through f. More...
|
| |
|
OutputDataType const & | OutputParameter () const |
| | Get the output parameter.
|
| |
|
OutputDataType & | OutputParameter () |
| | Modify the output parameter.
|
| |
|
OutputDataType const & | Delta () const |
| | Get the delta.
|
| |
|
OutputDataType & | Delta () |
| | Modify the delta.
|
| |
|
size_t const & | InputWidth () const |
| | Get the intput width.
|
| |
|
size_t & | InputWidth () |
| | Modify the input width.
|
| |
|
size_t const & | InputHeight () const |
| | Get the input height.
|
| |
|
size_t & | InputHeight () |
| | Modify the input height.
|
| |
|
size_t const & | OutputWidth () const |
| | Get the output width.
|
| |
|
size_t & | OutputWidth () |
| | Modify the output width.
|
| |
|
size_t const & | OutputHeight () const |
| | Get the output height.
|
| |
|
size_t & | OutputHeight () |
| | Modify the output height.
|
| |
|
size_t | InputSize () const |
| | Get the input size.
|
| |
|
size_t | OutputSize () const |
| | Get the output size.
|
| |
|
size_t | NormType () const |
| | Get the normType.
|
| |
|
size_t & | NormType () |
| | Modify the normType.
|
| |
|
size_t | KernelWidth () const |
| | Get the kernel width.
|
| |
|
size_t & | KernelWidth () |
| | Modify the kernel width.
|
| |
|
size_t | KernelHeight () const |
| | Get the kernel height.
|
| |
|
size_t & | KernelHeight () |
| | Modify the kernel height.
|
| |
|
size_t | StrideWidth () const |
| | Get the stride width.
|
| |
|
size_t & | StrideWidth () |
| | Modify the stride width.
|
| |
|
size_t | StrideHeight () const |
| | Get the stride height.
|
| |
|
size_t & | StrideHeight () |
| | Modify the stride height.
|
| |
|
bool const & | Floor () const |
| | Get the value of the rounding operation.
|
| |
|
bool & | Floor () |
| | Modify the value of the rounding operation.
|
| |
|
size_t | WeightSize () const |
| | Get the size of the weights.
|
| |
|
template<typename Archive > |
| void | serialize (Archive &ar, const uint32_t) |
| | Serialize the layer.
|
| |
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::LpPooling< InputDataType, OutputDataType >
Implementation of the LPPooling.
- Template Parameters
-
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
◆ LpPooling()
template<typename InputDataType , typename OutputDataType >
| mlpack::ann::LpPooling< InputDataType, OutputDataType >::LpPooling |
( |
const size_t |
normType, |
|
|
const size_t |
kernelWidth, |
|
|
const size_t |
kernelHeight, |
|
|
const size_t |
strideWidth = 1, |
|
|
const size_t |
strideHeight = 1, |
|
|
const bool |
floor = true |
|
) |
| |
Create the LpPooling object using the specified number of units.
- Parameters
-
| normType | Parameter for type of norm. |
| kernelWidth | Width of the pooling window. |
| kernelHeight | Height of the pooling window. |
| strideWidth | Width of the stride operation. |
| strideHeight | Width of the stride operation. |
| floor | Set to true to use floor method. |
◆ Backward()
template<typename InputDataType , typename OutputDataType >
template<typename eT >
| void mlpack::ann::LpPooling< InputDataType, OutputDataType >::Backward |
( |
const arma::Mat< eT > & |
, |
|
|
const arma::Mat< eT > & |
gy, |
|
|
arma::Mat< eT > & |
g |
|
) |
| |
Ordinary feed backward pass of a neural network, using 3rd-order tensors as input, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed forward pass.
- Parameters
-
| * | (input) The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
◆ Forward()
template<typename InputDataType , typename OutputDataType >
template<typename eT >
| void mlpack::ann::LpPooling< InputDataType, OutputDataType >::Forward |
( |
const arma::Mat< eT > & |
input, |
|
|
arma::Mat< eT > & |
output |
|
) |
| |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
- Parameters
-
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
The documentation for this class was generated from the following files: