mlpack
Public Member Functions | List of all members
mlpack::ann::MeanAbsolutePercentageError< InputDataType, OutputDataType > Class Template Reference

The mean absolute percentage error performance function measures the network's performance according to the mean of the absolute difference between input and target divided by target. More...

#include <mean_absolute_percentage_error.hpp>

Public Member Functions

 MeanAbsolutePercentageError ()
 Create the MeanAbsolutePercentageError object.
 
template<typename PredictionType , typename TargetType >
PredictionType::elem_type Forward (const PredictionType &prediction, const TargetType &target)
 Computes the mean absolute percentage error function. More...
 
template<typename PredictionType , typename TargetType , typename LossType >
void Backward (const PredictionType &prediction, const TargetType &target, LossType &loss)
 Ordinary feed backward pass of a neural network. More...
 
OutputDataType & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
template<typename Archive >
void serialize (Archive &ar, const unsigned int)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::MeanAbsolutePercentageError< InputDataType, OutputDataType >

The mean absolute percentage error performance function measures the network's performance according to the mean of the absolute difference between input and target divided by target.

For more information, refer to the following paper,

@article{de_Myttenaere_2016,
author = {de Myttenaere, Arnaud and Golden, Boris and Le Grand,
Bénédicte and Rossi, Fabrice},
title = {Mean Absolute Percentage Error for regression models},
journal = {Neurocomputing},
volume = {abs/1605.02541},
year = {2016},
url = {https://arxiv.org/abs/1605.02541},
eprint = {1605.02541},
}
Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType , typename LossType >
void mlpack::ann::MeanAbsolutePercentageError< InputDataType, OutputDataType >::Backward ( const PredictionType &  prediction,
const TargetType &  target,
LossType &  loss 
)

Ordinary feed backward pass of a neural network.

Parameters
predictionPredictions used for evaluating the specified loss function.
targetThe target vector.
lossThe calculated error.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType >
PredictionType::elem_type mlpack::ann::MeanAbsolutePercentageError< InputDataType, OutputDataType >::Forward ( const PredictionType &  prediction,
const TargetType &  target 
)

Computes the mean absolute percentage error function.

Parameters
predictionPredictions used for evaluating the specified loss function.
targetThe target vector.

The documentation for this class was generated from the following files: