mlpack
Public Member Functions | List of all members
mlpack::ann::MeanSquaredError< InputDataType, OutputDataType > Class Template Reference

The mean squared error performance function measures the network's performance according to the mean of squared errors. More...

#include <mean_squared_error.hpp>

Public Member Functions

 MeanSquaredError ()
 Create the MeanSquaredError object.
 
template<typename PredictionType , typename TargetType >
PredictionType::elem_type Forward (const PredictionType &prediction, const TargetType &target)
 Computes the mean squared error function. More...
 
template<typename PredictionType , typename TargetType , typename LossType >
void Backward (const PredictionType &prediction, const TargetType &target, LossType &loss)
 Ordinary feed backward pass of a neural network. More...
 
OutputDataType & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::MeanSquaredError< InputDataType, OutputDataType >

The mean squared error performance function measures the network's performance according to the mean of squared errors.

Template Parameters
ActivationFunctionActivation function used for the embedding layer.
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType , typename LossType >
void mlpack::ann::MeanSquaredError< InputDataType, OutputDataType >::Backward ( const PredictionType &  prediction,
const TargetType &  target,
LossType &  loss 
)

Ordinary feed backward pass of a neural network.

Parameters
predictionPredictions used for evaluating the specified loss function
targetThe target vector.
lossThe calculated error.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType >
PredictionType::elem_type mlpack::ann::MeanSquaredError< InputDataType, OutputDataType >::Forward ( const PredictionType &  prediction,
const TargetType &  target 
)

Computes the mean squared error function.

Parameters
predictionPredictions used for evaluating the specified loss function.
targetThe target vector.

The documentation for this class was generated from the following files: