The mean squared error performance function measures the network's performance according to the mean of squared errors.
More...
#include <mean_squared_error.hpp>
|
|
| MeanSquaredError () |
| | Create the MeanSquaredError object.
|
| |
| template<typename PredictionType , typename TargetType > |
| PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| | Computes the mean squared error function. More...
|
| |
| template<typename PredictionType , typename TargetType , typename LossType > |
| void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| | Ordinary feed backward pass of a neural network. More...
|
| |
|
OutputDataType & | OutputParameter () const |
| | Get the output parameter.
|
| |
|
OutputDataType & | OutputParameter () |
| | Modify the output parameter.
|
| |
|
template<typename Archive > |
| void | serialize (Archive &ar, const uint32_t) |
| | Serialize the layer.
|
| |
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::MeanSquaredError< InputDataType, OutputDataType >
The mean squared error performance function measures the network's performance according to the mean of squared errors.
- Template Parameters
-
| ActivationFunction | Activation function used for the embedding layer. |
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
◆ Backward()
template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType , typename LossType >
| void mlpack::ann::MeanSquaredError< InputDataType, OutputDataType >::Backward |
( |
const PredictionType & |
prediction, |
|
|
const TargetType & |
target, |
|
|
LossType & |
loss |
|
) |
| |
Ordinary feed backward pass of a neural network.
- Parameters
-
| prediction | Predictions used for evaluating the specified loss function |
| target | The target vector. |
| loss | The calculated error. |
◆ Forward()
template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType >
| PredictionType::elem_type mlpack::ann::MeanSquaredError< InputDataType, OutputDataType >::Forward |
( |
const PredictionType & |
prediction, |
|
|
const TargetType & |
target |
|
) |
| |
Computes the mean squared error function.
- Parameters
-
| prediction | Predictions used for evaluating the specified loss function. |
| target | The target vector. |
The documentation for this class was generated from the following files: