The mean squared logarithmic error performance function measures the network's performance according to the mean of squared logarithmic errors.
More...
#include <mean_squared_logarithmic_error.hpp>
|
| MeanSquaredLogarithmicError () |
| Create the MeanSquaredLogarithmicError object.
|
|
template<typename PredictionType , typename TargetType > |
PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| Computes the mean squared logarithmic error function. More...
|
|
template<typename PredictionType , typename TargetType , typename LossType > |
void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| Ordinary feed backward pass of a neural network. More...
|
|
OutputDataType & | OutputParameter () const |
| Get the output parameter.
|
|
OutputDataType & | OutputParameter () |
| Modify the output parameter.
|
|
template<typename Archive > |
void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer.
|
|
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::MeanSquaredLogarithmicError< InputDataType, OutputDataType >
The mean squared logarithmic error performance function measures the network's performance according to the mean of squared logarithmic errors.
- Template Parameters
-
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
◆ Backward()
template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType , typename LossType >
Ordinary feed backward pass of a neural network.
- Parameters
-
prediction | Predictions used for evaluating the specified loss function. |
target | The target vector. |
loss | The calculated error. |
◆ Forward()
template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType >
Computes the mean squared logarithmic error function.
- Parameters
-
prediction | Predictions used for evaluating the specified loss function. |
target | The target vector. |
The documentation for this class was generated from the following files: