mlpack
|
Implementation of the NoisyLinear layer class. More...
#include <noisylinear.hpp>
Public Member Functions | |
NoisyLinear () | |
Create the NoisyLinear object. | |
NoisyLinear (const size_t inSize, const size_t outSize) | |
Create the NoisyLinear layer object using the specified number of units. More... | |
NoisyLinear (const NoisyLinear &) | |
Copy constructor. | |
NoisyLinear (NoisyLinear &&) | |
Move constructor. | |
NoisyLinear & | operator= (const NoisyLinear &layer) |
Operator= copy constructor. | |
NoisyLinear & | operator= (NoisyLinear &&layer) |
Operator= move constructor. | |
void | Reset () |
void | ResetNoise () |
void | ResetParameters () |
template<typename eT > | |
void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template<typename eT > | |
void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
template<typename eT > | |
void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &error, arma::Mat< eT > &gradient) |
OutputDataType const & | Parameters () const |
Get the parameters. | |
OutputDataType & | Parameters () |
Modify the parameters. | |
InputDataType const & | InputParameter () const |
Get the input parameter. | |
InputDataType & | InputParameter () |
Modify the input parameter. | |
OutputDataType const & | OutputParameter () const |
Get the output parameter. | |
OutputDataType & | OutputParameter () |
Modify the output parameter. | |
OutputDataType const & | Delta () const |
Get the delta. | |
OutputDataType & | Delta () |
Modify the delta. | |
size_t | InputSize () const |
Get the input size. | |
size_t | OutputSize () const |
Get the output size. | |
OutputDataType const & | Gradient () const |
Get the gradient. | |
OutputDataType & | Gradient () |
Modify the gradient. | |
size_t | InputShape () const |
Get the shape of the input. | |
arma::mat & | Bias () |
Modify the bias weights of the layer. | |
size_t | WeightSize () const |
Get size of weights. | |
template<typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. | |
Implementation of the NoisyLinear layer class.
It represents a single layer of a neural network, with parametric noise added to its weights.
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
mlpack::ann::NoisyLinear< InputDataType, OutputDataType >::NoisyLinear | ( | const size_t | inSize, |
const size_t | outSize | ||
) |
Create the NoisyLinear layer object using the specified number of units.
inSize | The number of input units. |
outSize | The number of output units. |
void mlpack::ann::NoisyLinear< InputDataType, OutputDataType >::Backward | ( | const arma::Mat< eT > & | , |
const arma::Mat< eT > & | gy, | ||
arma::Mat< eT > & | g | ||
) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
* | (input) The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
void mlpack::ann::NoisyLinear< InputDataType, OutputDataType >::Forward | ( | const arma::Mat< eT > & | input, |
arma::Mat< eT > & | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |