mlpack
|
The PReLU activation function, defined by (where alpha is trainable) More...
#include <parametric_relu.hpp>
Public Member Functions | |
PReLU (const double userAlpha=0.03) | |
Create the PReLU object using the specified parameters. More... | |
void | Reset () |
template<typename InputType , typename OutputType > | |
void | Forward (const InputType &input, OutputType &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template<typename DataType > | |
void | Backward (const DataType &input, const DataType &gy, DataType &g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More... | |
template<typename eT > | |
void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &error, arma::Mat< eT > &gradient) |
Calculate the gradient using the output delta and the input activation. More... | |
OutputDataType const & | Parameters () const |
Get the parameters. | |
OutputDataType & | Parameters () |
Modify the parameters. | |
OutputDataType const & | OutputParameter () const |
Get the output parameter. | |
OutputDataType & | OutputParameter () |
Modify the output parameter. | |
OutputDataType const & | Delta () const |
Get the delta. | |
OutputDataType & | Delta () |
Modify the delta. | |
OutputDataType const & | Gradient () const |
Get the gradient. | |
OutputDataType & | Gradient () |
Modify the gradient. | |
double const & | Alpha () const |
Get the non zero gradient. | |
double & | Alpha () |
Modify the non zero gradient. | |
size_t | WeightSize () const |
Get size of weights. | |
template<typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. | |
The PReLU activation function, defined by (where alpha is trainable)
\begin{eqnarray*} f(x) &=& \max(x, alpha*x) \\ f'(x) &=& \left\{ \begin{array}{lr} 1 & : x > 0 \\ alpha & : x \le 0 \end{array} \right. \end{eqnarray*}
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
mlpack::ann::PReLU< InputDataType, OutputDataType >::PReLU | ( | const double | userAlpha = 0.03 | ) |
Create the PReLU object using the specified parameters.
The non zero gradient can be adjusted by specifying tha parameter alpha in the range 0 to 1. Default (alpha = 0.03). This parameter is trainable.
userAlpha | Non zero gradient |
void mlpack::ann::PReLU< InputDataType, OutputDataType >::Backward | ( | const DataType & | input, |
const DataType & | gy, | ||
DataType & | g | ||
) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed forward pass.
input | The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
void mlpack::ann::PReLU< InputDataType, OutputDataType >::Forward | ( | const InputType & | input, |
OutputType & | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |
void mlpack::ann::PReLU< InputDataType, OutputDataType >::Gradient | ( | const arma::Mat< eT > & | input, |
const arma::Mat< eT > & | error, | ||
arma::Mat< eT > & | gradient | ||
) |
Calculate the gradient using the output delta and the input activation.
input | The input parameter used for calculating the gradient. |
error | The calculated error. |
gradient | The calculated gradient. |
void mlpack::ann::PReLU< InputDataType, OutputDataType >::Reset | ( | ) |
Set value of alpha to the one given by user.