mlpack
Public Member Functions | List of all members
mlpack::ann::Padding< InputDataType, OutputDataType > Class Template Reference

Implementation of the Padding module class. More...

#include <padding.hpp>

Public Member Functions

 Padding (const size_t padWLeft=0, const size_t padWRight=0, const size_t padHTop=0, const size_t padHBottom=0, const size_t inputWidth=0, const size_t inputHeight=0)
 Create the Padding object using the specified number of output units. More...
 
template<typename eT >
void Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output)
 Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
 
template<typename eT >
void Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
 Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More...
 
OutputDataType const & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
OutputDataType const & Delta () const
 Get the delta.
 
OutputDataType & Delta ()
 Modify the delta.
 
size_t PadWLeft () const
 Get the left padding width.
 
size_t & PadWLeft ()
 Modify the left padding width.
 
size_t PadWRight () const
 Get the right padding width.
 
size_t & PadWRight ()
 Modify the right padding width.
 
size_t PadHTop () const
 Get the top padding width.
 
size_t & PadHTop ()
 Modify the top padding width.
 
size_t PadHBottom () const
 Get the bottom padding width.
 
size_t & PadHBottom ()
 Modify the bottom padding width.
 
size_t InputWidth () const
 Get the input width.
 
size_t & InputWidth ()
 Modify the input width.
 
size_t InputHeight () const
 Get the input height.
 
size_t & InputHeight ()
 Modify the input height.
 
size_t OutputWidth () const
 Get the output width.
 
size_t & OutputWidth ()
 Modify the output width.
 
size_t OutputHeight () const
 Get the output height.
 
size_t & OutputHeight ()
 Modify the output height.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::Padding< InputDataType, OutputDataType >

Implementation of the Padding module class.

The Padding module applies a bias term to the incoming data.

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Constructor & Destructor Documentation

◆ Padding()

template<typename InputDataType , typename OutputDataType >
mlpack::ann::Padding< InputDataType, OutputDataType >::Padding ( const size_t  padWLeft = 0,
const size_t  padWRight = 0,
const size_t  padHTop = 0,
const size_t  padHBottom = 0,
const size_t  inputWidth = 0,
const size_t  inputHeight = 0 
)

Create the Padding object using the specified number of output units.

Parameters
padWLeftLeft padding width of the input.
padWRightRight padding width of the input.
padHTopTop padding height of the input.
padHBottomBottom padding height of the input.
inputWidthWidth of the input.
inputHeightHeight of the input.

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::Padding< InputDataType, OutputDataType >::Backward ( const arma::Mat< eT > &  ,
const arma::Mat< eT > &  gy,
arma::Mat< eT > &  g 
)

Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.

Using the results from the feed forward pass.

Parameters
*(input) The propagated input activation.
gyThe backpropagated error.
gThe calculated gradient.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::Padding< InputDataType, OutputDataType >::Forward ( const arma::Mat< eT > &  input,
arma::Mat< eT > &  output 
)

Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.

Parameters
inputInput data used for evaluating the specified function.
outputResulting output activation.

The documentation for this class was generated from the following files: