|
mlpack
|
Implementation of the Poisson negative log likelihood loss. More...
#include <poisson_nll_loss.hpp>
Public Member Functions | |
| PoissonNLLLoss (const bool logInput=true, const bool full=false, const typename InputDataType::elem_type eps=1e-08, const bool mean=true) | |
| Create the PoissonNLLLoss object. More... | |
| template<typename PredictionType , typename TargetType > | |
| InputDataType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| Computes the Poisson negative log likelihood Loss. More... | |
| template<typename PredictionType , typename TargetType , typename LossType > | |
| void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| Ordinary feed backward pass of a neural network. More... | |
| InputDataType & | InputParameter () const |
| Get the input parameter. | |
| InputDataType & | InputParameter () |
| Modify the input parameter. | |
| OutputDataType & | OutputParameter () const |
| Get the output parameter. | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. | |
| bool | LogInput () const |
| Get the value of logInput. More... | |
| bool & | LogInput () |
| Modify the value of logInput. More... | |
| bool | Full () const |
| Get the value of full. More... | |
| bool & | Full () |
| Modify the value of full. More... | |
| InputDataType::elem_type | Eps () const |
| Get the value of eps. More... | |
| InputDataType::elem_type & | Eps () |
| Modify the value of eps. More... | |
| bool | Mean () const |
| Get the value of mean. More... | |
| bool & | Mean () |
| Modify the value of mean. More... | |
| template<typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. | |
Implementation of the Poisson negative log likelihood loss.
This loss function expects input for each class. It also expects a class index, in the range between 1 and the number of classes, as target when calling the Forward function.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| mlpack::ann::PoissonNLLLoss< InputDataType, OutputDataType >::PoissonNLLLoss | ( | const bool | logInput = true, |
| const bool | full = false, |
||
| const typename InputDataType::elem_type | eps = 1e-08, |
||
| const bool | mean = true |
||
| ) |
Create the PoissonNLLLoss object.
| logInput | If true the loss is computed as \( \exp(input) - target \cdot input \), if false then the loss is \( input - target \cdot \log(input + eps) \). |
| full | Boolean value that determines whether to include Stirling's approximation term. |
| eps | A small value to prevent 0 in denominators and logarithms. |
| mean | When true, mean loss is computed otherwise total loss. |
| void mlpack::ann::PoissonNLLLoss< InputDataType, OutputDataType >::Backward | ( | const PredictionType & | prediction, |
| const TargetType & | target, | ||
| LossType & | loss | ||
| ) |
Ordinary feed backward pass of a neural network.
The Poisson Negative Log Likelihood loss function expects the input for each class. It expects a class index, in the range between 1 and the number of classes, as target when calling the Forward function.
| prediction | Predictions used for evaluating the specified loss function. |
| target | The target vector, that contains the class index in the range between 1 and the number of classes. |
| loss | The calculated error. |
|
inline |
Get the value of eps.
eps is a small value required to prevent 0 in logarithms and denominators.
|
inline |
Modify the value of eps.
eps is a small value required to prevent 0 in logarithms and denominators.
| InputDataType::elem_type mlpack::ann::PoissonNLLLoss< InputDataType, OutputDataType >::Forward | ( | const PredictionType & | prediction, |
| const TargetType & | target | ||
| ) |
Computes the Poisson negative log likelihood Loss.
| prediction | Predictions used for evaluating the specified loss function. |
| target | The target vector, that contains the class index in the range between 1 and the number of classes. |
|
inline |
Get the value of full.
full is a boolean value that determines whether to include Stirling's approximation term.
|
inline |
Modify the value of full.
full is a boolean value that determines whether to include Stirling's approximation term.
|
inline |
Get the value of logInput.
logInput is a boolean value that tells if logits are given as input.
|
inline |
Modify the value of logInput.
logInput is a boolean value that tells if logits are given as input.
|
inline |
Get the value of mean.
It's a boolean value that tells if mean of the total loss has to be taken.
|
inline |
Modify the value of mean.
It's a boolean value that tells if mean of the total loss has to be taken.
1.8.13