mlpack
mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers > Member List

This is the complete list of members for mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >, including all inherited members.

Add(Args... args) (defined in mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
Add(LayerTypes< CustomLayers... > layer) (defined in mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
BRNN (defined in mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >friend
Evaluate(const arma::mat &parameters, const size_t begin, const size_t batchSize, const bool deterministic)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
Evaluate(const arma::mat &parameters, const size_t begin, const size_t batchSize)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
EvaluateWithGradient(const arma::mat &parameters, const size_t begin, GradType &gradient, const size_t batchSize)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
Gradient(const arma::mat &parameters, const size_t begin, arma::mat &gradient, const size_t batchSize)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
NetworkType typedefmlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
NumFunctions() constmlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
operator=(const RNN &)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
operator=(RNN &&)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
Parameters() constmlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
Parameters()mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
Predict(arma::cube predictors, arma::cube &results, const size_t batchSize=256)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
Predictors() constmlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
Predictors()mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
Reset()mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
ResetParameters()mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
Responses() constmlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
Responses()mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
Rho() constmlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
Rho()mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >inline
RNN(const size_t rho, const bool single=false, OutputLayerType outputLayer=OutputLayerType(), InitializationRuleType initializeRule=InitializationRuleType())mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
RNN(const RNN &)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
RNN(RNN &&)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
serialize(Archive &ar, const uint32_t)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
Shuffle()mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
Train(arma::cube predictors, arma::cube responses, OptimizerType &optimizer, CallbackTypes &&... callbacks)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
Train(arma::cube predictors, arma::cube responses, CallbackTypes &&... callbacks)mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
WarnMessageMaxIterations(OptimizerType &optimizer, size_t samples) constmlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
WarnMessageMaxIterations(OptimizerType &optimizer, size_t samples) constmlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >
~RNN()mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >