mlpack
Public Types | Public Member Functions | Friends | List of all members
mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers > Class Template Reference

Implementation of a standard recurrent neural network container. More...

#include <rnn.hpp>

Public Types

using NetworkType = RNN< OutputLayerType, InitializationRuleType, CustomLayers... >
 Convenience typedef for the internal model construction.
 

Public Member Functions

 RNN (const size_t rho, const bool single=false, OutputLayerType outputLayer=OutputLayerType(), InitializationRuleType initializeRule=InitializationRuleType())
 Create the RNN object. More...
 
 RNN (const RNN &)
 Copy constructor.
 
 RNN (RNN &&)
 Move constructor.
 
RNNoperator= (const RNN &)
 Copy assignment operator.
 
RNNoperator= (RNN &&)
 Move assignment operator.
 
 ~RNN ()
 Destructor to release allocated memory.
 
template<typename OptimizerType >
std::enable_if< HasMaxIterations< OptimizerType, size_t &(OptimizerType::*)()>::value, void >::type WarnMessageMaxIterations (OptimizerType &optimizer, size_t samples) const
 Check if the optimizer has MaxIterations() parameter, if it does then check if it's value is less than the number of datapoints in the dataset. More...
 
template<typename OptimizerType >
std::enable_if< !HasMaxIterations< OptimizerType, size_t &(OptimizerType::*)()>::value, void >::type WarnMessageMaxIterations (OptimizerType &optimizer, size_t samples) const
 Check if the optimizer has MaxIterations() parameter, if it doesn't then simply return from the function. More...
 
template<typename OptimizerType , typename... CallbackTypes>
double Train (arma::cube predictors, arma::cube responses, OptimizerType &optimizer, CallbackTypes &&... callbacks)
 Train the recurrent neural network on the given input data using the given optimizer. More...
 
template<typename OptimizerType = ens::StandardSGD, typename... CallbackTypes>
double Train (arma::cube predictors, arma::cube responses, CallbackTypes &&... callbacks)
 Train the recurrent neural network on the given input data. More...
 
void Predict (arma::cube predictors, arma::cube &results, const size_t batchSize=256)
 Predict the responses to a given set of predictors. More...
 
double Evaluate (const arma::mat &parameters, const size_t begin, const size_t batchSize, const bool deterministic)
 Evaluate the recurrent neural network with the given parameters. More...
 
double Evaluate (const arma::mat &parameters, const size_t begin, const size_t batchSize)
 Evaluate the recurrent neural network with the given parameters. More...
 
template<typename GradType >
double EvaluateWithGradient (const arma::mat &parameters, const size_t begin, GradType &gradient, const size_t batchSize)
 Evaluate the recurrent neural network with the given parameters. More...
 
void Gradient (const arma::mat &parameters, const size_t begin, arma::mat &gradient, const size_t batchSize)
 Evaluate the gradient of the recurrent neural network with the given parameters, and with respect to only one point in the dataset. More...
 
void Shuffle ()
 Shuffle the order of function visitation. More...
 
template<class LayerType , class... Args>
void Add (Args... args)
 
void Add (LayerTypes< CustomLayers... > layer)
 
size_t NumFunctions () const
 Return the number of separable functions (the number of predictor points).
 
const arma::mat & Parameters () const
 Return the initial point for the optimization.
 
arma::mat & Parameters ()
 Modify the initial point for the optimization.
 
const size_t & Rho () const
 Return the maximum length of backpropagation through time.
 
size_t & Rho ()
 Modify the maximum length of backpropagation through time.
 
const arma::cube & Responses () const
 Get the matrix of responses to the input data points.
 
arma::cube & Responses ()
 Modify the matrix of responses to the input data points.
 
const arma::cube & Predictors () const
 Get the matrix of data points (predictors).
 
arma::cube & Predictors ()
 Modify the matrix of data points (predictors).
 
void Reset ()
 Reset the state of the network. More...
 
void ResetParameters ()
 Reset the module information (weights/parameters).
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the model.
 

Friends

template<typename OutputLayerType1 , typename MergeLayerType1 , typename MergeOutputType1 , typename InitializationRuleType1 , typename... CustomLayers1>
class BRNN
 

Detailed Description

template<typename OutputLayerType = NegativeLogLikelihood<>, typename InitializationRuleType = RandomInitialization, typename... CustomLayers>
class mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >

Implementation of a standard recurrent neural network container.

Template Parameters
OutputLayerTypeThe output layer type used to evaluate the network.
InitializationRuleTypeRule used to initialize the weight matrix.

Constructor & Destructor Documentation

◆ RNN()

template<typename OutputLayerType, typename InitializationRuleType, typename... CustomLayers>
mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::RNN ( const size_t  rho,
const bool  single = false,
OutputLayerType  outputLayer = OutputLayerType(),
InitializationRuleType  initializeRule = InitializationRuleType() 
)

Create the RNN object.

Optionally, specify which initialize rule and performance function should be used.

If you want to pass in a parameter and discard the original parameter object, be sure to use std::move to avoid unnecessary copy.

Parameters
rhoMaximum number of steps to backpropagate through time (BPTT).
singlePredict only the last element of the input sequence.
outputLayerOutput layer used to evaluate the network.
initializeRuleOptional instantiated InitializationRule object for initializing the network parameter.

Member Function Documentation

◆ Evaluate() [1/2]

template<typename OutputLayerType , typename InitializationRuleType , typename... CustomLayers>
double mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::Evaluate ( const arma::mat &  parameters,
const size_t  begin,
const size_t  batchSize,
const bool  deterministic 
)

Evaluate the recurrent neural network with the given parameters.

This function is usually called by the optimizer to train the model.

Parameters
parametersMatrix model parameters.
beginIndex of the starting point to use for objective function evaluation.
batchSizeNumber of points to be passed at a time to use for objective function evaluation.
deterministicWhether or not to train or test the model. Note some layer act differently in training or testing mode.

◆ Evaluate() [2/2]

template<typename OutputLayerType , typename InitializationRuleType , typename... CustomLayers>
double mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::Evaluate ( const arma::mat &  parameters,
const size_t  begin,
const size_t  batchSize 
)

Evaluate the recurrent neural network with the given parameters.

This function is usually called by the optimizer to train the model. This just calls the other overload of Evaluate() with deterministic = true.

Parameters
parametersMatrix model parameters.
beginIndex of the starting point to use for objective function evaluation.
batchSizeNumber of points to be passed at a time to use for objective function evaluation.

◆ EvaluateWithGradient()

template<typename OutputLayerType , typename InitializationRuleType , typename... CustomLayers>
template<typename GradType >
double mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::EvaluateWithGradient ( const arma::mat &  parameters,
const size_t  begin,
GradType &  gradient,
const size_t  batchSize 
)

Evaluate the recurrent neural network with the given parameters.

This function is usually called by the optimizer to train the model.

Parameters
parametersMatrix model parameters.
beginIndex of the starting point to use for objective function evaluation.
gradientMatrix to output gradient into.
batchSizeNumber of points to be passed at a time to use for objective function evaluation.

◆ Gradient()

template<typename OutputLayerType , typename InitializationRuleType , typename... CustomLayers>
void mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::Gradient ( const arma::mat &  parameters,
const size_t  begin,
arma::mat &  gradient,
const size_t  batchSize 
)

Evaluate the gradient of the recurrent neural network with the given parameters, and with respect to only one point in the dataset.

This is useful for optimizers such as SGD, which require a separable objective function.

Parameters
parametersMatrix of the model parameters to be optimized.
beginIndex of the starting point to use for objective function gradient evaluation.
gradientMatrix to output gradient into.
batchSizeNumber of points to be processed as a batch for objective function gradient evaluation.

◆ Predict()

template<typename OutputLayerType , typename InitializationRuleType , typename... CustomLayers>
void mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::Predict ( arma::cube  predictors,
arma::cube &  results,
const size_t  batchSize = 256 
)

Predict the responses to a given set of predictors.

The responses will reflect the output of the given output layer as returned by the output layer function.

If you want to pass in a parameter and discard the original parameter object, be sure to use std::move to avoid unnecessary copy.

The format of the data should be as follows:

  • each slice should correspond to a time step
  • each column should correspond to a data point
  • each row should correspond to a dimension So, e.g., predictors(i, j, k) is the i'th dimension of the j'th data point at time slice k. The responses will be in the same format.
Parameters
predictorsInput predictors.
resultsMatrix to put output predictions of responses into.
batchSizeNumber of points to predict at once.

◆ Reset()

template<typename OutputLayerType , typename InitializationRuleType , typename... CustomLayers>
void mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::Reset ( )

Reset the state of the network.

This ensures that all internally-held gradients are set to 0, all memory cells are reset, and the parameters matrix is the right size.

◆ Shuffle()

template<typename OutputLayerType , typename InitializationRuleType , typename... CustomLayers>
void mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::Shuffle ( )

Shuffle the order of function visitation.

This may be called by the optimizer.

◆ Train() [1/2]

template<typename OutputLayerType , typename InitializationRuleType , typename... CustomLayers>
template<typename OptimizerType , typename... CallbackTypes>
double mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::Train ( arma::cube  predictors,
arma::cube  responses,
OptimizerType &  optimizer,
CallbackTypes &&...  callbacks 
)

Train the recurrent neural network on the given input data using the given optimizer.

This will use the existing model parameters as a starting point for the optimization. If this is not what you want, then you should access the parameters vector directly with Parameters() and modify it as desired.

If you want to pass in a parameter and discard the original parameter object, be sure to use std::move to avoid unnecessary copy.

The format of the data should be as follows:

  • each slice should correspond to a time step
  • each column should correspond to a data point
  • each row should correspond to a dimension So, e.g., predictors(i, j, k) is the i'th dimension of the j'th data point at time slice k.
Template Parameters
OptimizerTypeType of optimizer to use to train the model.
CallbackTypesTypes of Callback Functions.
Parameters
predictorsInput training variables.
responsesOutputs results from input training variables.
optimizerInstantiated optimizer used to train the model.
callbacksCallback function for ensmallen optimizer OptimizerType. See https://www.ensmallen.org/docs.html#callback-documentation.
Returns
The final objective of the trained model (NaN or Inf on error).

◆ Train() [2/2]

template<typename OutputLayerType , typename InitializationRuleType , typename... CustomLayers>
template<typename OptimizerType , typename... CallbackTypes>
double mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::Train ( arma::cube  predictors,
arma::cube  responses,
CallbackTypes &&...  callbacks 
)

Train the recurrent neural network on the given input data.

By default, the SGD optimization algorithm is used, but others can be specified (such as ens::RMSprop).

This will use the existing model parameters as a starting point for the optimization. If this is not what you want, then you should access the parameters vector directly with Parameters() and modify it as desired.

If you want to pass in a parameter and discard the original parameter object, be sure to use std::move to avoid unnecessary copy.

The format of the data should be as follows:

  • each slice should correspond to a time step
  • each column should correspond to a data point
  • each row should correspond to a dimension So, e.g., predictors(i, j, k) is the i'th dimension of the j'th data point at time slice k.
Template Parameters
OptimizerTypeType of optimizer to use to train the model.
CallbackTypesTypes of Callback Functions.
Parameters
predictorsInput training variables.
responsesOutputs results from input training variables.
callbacksCallback function for ensmallen optimizer OptimizerType. See https://www.ensmallen.org/docs.html#callback-documentation.
Returns
The final objective of the trained model (NaN or Inf on error).

◆ WarnMessageMaxIterations() [1/2]

template<typename OutputLayerType , typename InitializationRuleType , typename... CustomLayers>
template<typename OptimizerType >
std::enable_if< !HasMaxIterations< OptimizerType, size_t &(OptimizerType::*)()>::value, void >::type mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::WarnMessageMaxIterations ( OptimizerType &  optimizer,
size_t  samples 
) const

Check if the optimizer has MaxIterations() parameter, if it does then check if it's value is less than the number of datapoints in the dataset.

Template Parameters
OptimizerTypeType of optimizer to use to train the model.
Parameters
optimizeroptimizer used in the training process.
samplesNumber of datapoints in the dataset.

◆ WarnMessageMaxIterations() [2/2]

template<typename OutputLayerType = NegativeLogLikelihood<>, typename InitializationRuleType = RandomInitialization, typename... CustomLayers>
template<typename OptimizerType >
std::enable_if< !HasMaxIterations<OptimizerType, size_t&(OptimizerType::*)()>::value, void>::type mlpack::ann::RNN< OutputLayerType, InitializationRuleType, CustomLayers >::WarnMessageMaxIterations ( OptimizerType &  optimizer,
size_t  samples 
) const

Check if the optimizer has MaxIterations() parameter, if it doesn't then simply return from the function.

Template Parameters
OptimizerTypeType of optimizer to use to train the model.
Parameters
optimizeroptimizer used in the training process.
samplesNumber of datapoints in the dataset.

The documentation for this class was generated from the following files: