The reconstruction loss performance function measures the network's performance equal to the negative log probability of the target with the input distribution.
More...
#include <reconstruction_loss.hpp>
|
| ReconstructionLoss () |
| Create the ReconstructionLoss object.
|
|
template<typename PredictionType , typename TargetType > |
PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| Computes the reconstruction loss. More...
|
|
template<typename PredictionType , typename TargetType , typename LossType > |
void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| Ordinary feed backward pass of a neural network. More...
|
|
OutputDataType & | OutputParameter () const |
| Get the output parameter.
|
|
OutputDataType & | OutputParameter () |
| Modify the output parameter.
|
|
template<typename Archive > |
void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer.
|
|
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat, typename DistType = BernoulliDistribution<InputDataType>>
class mlpack::ann::ReconstructionLoss< InputDataType, OutputDataType, DistType >
The reconstruction loss performance function measures the network's performance equal to the negative log probability of the target with the input distribution.
- Template Parameters
-
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
DistType | The type of distribution parametrized by the input. |
◆ Backward()
template<typename InputDataType , typename OutputDataType , typename DistType >
template<typename PredictionType , typename TargetType , typename LossType >
void mlpack::ann::ReconstructionLoss< InputDataType, OutputDataType, DistType >::Backward |
( |
const PredictionType & |
prediction, |
|
|
const TargetType & |
target, |
|
|
LossType & |
loss |
|
) |
| |
Ordinary feed backward pass of a neural network.
- Parameters
-
prediction | Predictions used for evaluating the specified loss function. |
target | The target matrix. |
loss | The calculated error. |
◆ Forward()
template<typename InputDataType , typename OutputDataType , typename DistType >
template<typename PredictionType , typename TargetType >
PredictionType::elem_type mlpack::ann::ReconstructionLoss< InputDataType, OutputDataType, DistType >::Forward |
( |
const PredictionType & |
prediction, |
|
|
const TargetType & |
target |
|
) |
| |
Computes the reconstruction loss.
- Parameters
-
prediction | Predictions used for evaluating the specified loss function. |
target | The target matrix. |
The documentation for this class was generated from the following files: