mlpack
|
Implementation of the RecurrentLayer class. More...
#include <recurrent.hpp>
Public Member Functions | |
Recurrent () | |
Default constructor—this will create a Recurrent object that can't be used, so be careful! Make sure to set all the parameters before use. | |
Recurrent (const Recurrent &) | |
Copy constructor. | |
template<typename StartModuleType , typename InputModuleType , typename FeedbackModuleType , typename TransferModuleType > | |
Recurrent (const StartModuleType &start, const InputModuleType &input, const FeedbackModuleType &feedback, const TransferModuleType &transfer, const size_t rho) | |
Create the Recurrent object using the specified modules. More... | |
template<typename eT > | |
void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template<typename eT > | |
void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
template<typename eT > | |
void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &error, arma::Mat< eT > &) |
std::vector< LayerTypes< CustomLayers... > > & | Model () |
Get the model modules. | |
bool | Deterministic () const |
The value of the deterministic parameter. | |
bool & | Deterministic () |
Modify the value of the deterministic parameter. | |
OutputDataType const & | Parameters () const |
Get the parameters. | |
OutputDataType & | Parameters () |
Modify the parameters. | |
OutputDataType const & | OutputParameter () const |
Get the output parameter. | |
OutputDataType & | OutputParameter () |
Modify the output parameter. | |
OutputDataType const & | Delta () const |
Get the delta. | |
OutputDataType & | Delta () |
Modify the delta. | |
OutputDataType const & | Gradient () const |
Get the gradient. | |
OutputDataType & | Gradient () |
Modify the gradient. | |
size_t const & | Rho () const |
Get the number of steps to backpropagate through time. | |
size_t | InputShape () const |
Get the shape of the input. | |
template<typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. | |
Implementation of the RecurrentLayer class.
Recurrent layers can be used similarly to feed-forward layers.
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
mlpack::ann::Recurrent< InputDataType, OutputDataType, CustomLayers >::Recurrent | ( | const StartModuleType & | start, |
const InputModuleType & | input, | ||
const FeedbackModuleType & | feedback, | ||
const TransferModuleType & | transfer, | ||
const size_t | rho | ||
) |
Create the Recurrent object using the specified modules.
start | The start module. |
input | The input module. |
feedback | The feedback module. |
transfer | The transfer module. |
rho | Maximum number of steps to backpropagate through time (BPTT). |
void mlpack::ann::Recurrent< InputDataType, OutputDataType, CustomLayers >::Backward | ( | const arma::Mat< eT > & | , |
const arma::Mat< eT > & | gy, | ||
arma::Mat< eT > & | g | ||
) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
* | (input) The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
void mlpack::ann::Recurrent< InputDataType, OutputDataType, CustomLayers >::Forward | ( | const arma::Mat< eT > & | input, |
arma::Mat< eT > & | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |