|
mlpack
|
Implementation of the RecurrentLayer class. More...
#include <recurrent.hpp>
Public Member Functions | |
| Recurrent () | |
| Default constructor—this will create a Recurrent object that can't be used, so be careful! Make sure to set all the parameters before use. | |
| Recurrent (const Recurrent &) | |
| Copy constructor. | |
| template<typename StartModuleType , typename InputModuleType , typename FeedbackModuleType , typename TransferModuleType > | |
| Recurrent (const StartModuleType &start, const InputModuleType &input, const FeedbackModuleType &feedback, const TransferModuleType &transfer, const size_t rho) | |
| Create the Recurrent object using the specified modules. More... | |
| template<typename eT > | |
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
| template<typename eT > | |
| void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
| template<typename eT > | |
| void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &error, arma::Mat< eT > &) |
| std::vector< LayerTypes< CustomLayers... > > & | Model () |
| Get the model modules. | |
| bool | Deterministic () const |
| The value of the deterministic parameter. | |
| bool & | Deterministic () |
| Modify the value of the deterministic parameter. | |
| OutputDataType const & | Parameters () const |
| Get the parameters. | |
| OutputDataType & | Parameters () |
| Modify the parameters. | |
| OutputDataType const & | OutputParameter () const |
| Get the output parameter. | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. | |
| OutputDataType const & | Delta () const |
| Get the delta. | |
| OutputDataType & | Delta () |
| Modify the delta. | |
| OutputDataType const & | Gradient () const |
| Get the gradient. | |
| OutputDataType & | Gradient () |
| Modify the gradient. | |
| size_t const & | Rho () const |
| Get the number of steps to backpropagate through time. | |
| size_t | InputShape () const |
| Get the shape of the input. | |
| template<typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. | |
Implementation of the RecurrentLayer class.
Recurrent layers can be used similarly to feed-forward layers.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| mlpack::ann::Recurrent< InputDataType, OutputDataType, CustomLayers >::Recurrent | ( | const StartModuleType & | start, |
| const InputModuleType & | input, | ||
| const FeedbackModuleType & | feedback, | ||
| const TransferModuleType & | transfer, | ||
| const size_t | rho | ||
| ) |
Create the Recurrent object using the specified modules.
| start | The start module. |
| input | The input module. |
| feedback | The feedback module. |
| transfer | The transfer module. |
| rho | Maximum number of steps to backpropagate through time (BPTT). |
| void mlpack::ann::Recurrent< InputDataType, OutputDataType, CustomLayers >::Backward | ( | const arma::Mat< eT > & | , |
| const arma::Mat< eT > & | gy, | ||
| arma::Mat< eT > & | g | ||
| ) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
| * | (input) The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
| void mlpack::ann::Recurrent< InputDataType, OutputDataType, CustomLayers >::Forward | ( | const arma::Mat< eT > & | input, |
| arma::Mat< eT > & | output | ||
| ) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
1.8.13