|
mlpack
|
Implementation of the Reparametrization layer class. More...
#include <reparametrization.hpp>
Public Member Functions | |
| Reparametrization () | |
| Create the Reparametrization object. | |
| Reparametrization (const size_t latentSize, const bool stochastic=true, const bool includeKl=true, const double beta=1) | |
| Create the Reparametrization layer object using the specified sample vector size. More... | |
| Reparametrization (const Reparametrization &layer) | |
| Copy Constructor. | |
| Reparametrization (Reparametrization &&layer) | |
| Move Constructor. | |
| Reparametrization & | operator= (const Reparametrization &layer) |
| Copy assignment operator. | |
| Reparametrization & | operator= (Reparametrization &&layer) |
| Move assignment operator. | |
| template<typename eT > | |
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
| template<typename eT > | |
| void | Backward (const arma::Mat< eT > &input, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
| OutputDataType const & | OutputParameter () const |
| Get the output parameter. | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. | |
| OutputDataType const & | Delta () const |
| Get the delta. | |
| OutputDataType & | Delta () |
| Modify the delta. | |
| size_t const & | OutputSize () const |
| Get the output size. | |
| size_t & | OutputSize () |
| Modify the output size. | |
| double | Loss () |
| Get the KL divergence with standard normal. | |
| bool | Stochastic () const |
| Get the value of the stochastic parameter. | |
| bool | IncludeKL () const |
| Get the value of the includeKl parameter. | |
| double | Beta () const |
| Get the value of the beta hyperparameter. | |
| size_t | InputShape () const |
| template<typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. | |
Implementation of the Reparametrization layer class.
This layer samples from the given parameters of a normal distribution.
This class also supports beta-VAE, a state-of-the-art framework for automated discovery of interpretable factorised latent representations from raw image data in a completely unsupervised manner.
For more information, refer the following paper.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| mlpack::ann::Reparametrization< InputDataType, OutputDataType >::Reparametrization | ( | const size_t | latentSize, |
| const bool | stochastic = true, |
||
| const bool | includeKl = true, |
||
| const double | beta = 1 |
||
| ) |
Create the Reparametrization layer object using the specified sample vector size.
| latentSize | The number of output latent units. |
| stochastic | Whether we want random sample or constant. |
| includeKl | Whether we want to include KL loss in backward function. |
| beta | The beta (hyper)parameter for beta-VAE mentioned above. |
| void mlpack::ann::Reparametrization< InputDataType, OutputDataType >::Backward | ( | const arma::Mat< eT > & | input, |
| const arma::Mat< eT > & | gy, | ||
| arma::Mat< eT > & | g | ||
| ) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
| input | The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
| void mlpack::ann::Reparametrization< InputDataType, OutputDataType >::Forward | ( | const arma::Mat< eT > & | input, |
| arma::Mat< eT > & | output | ||
| ) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
1.8.13