mlpack
Public Member Functions | List of all members
mlpack::ann::Select< InputDataType, OutputDataType > Class Template Reference

The select module selects the specified column from a given input matrix. More...

#include <select.hpp>

Public Member Functions

 Select (const size_t index=0, const size_t elements=0)
 Create the Select object. More...
 
template<typename eT >
void Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output)
 Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
 
template<typename eT >
void Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
 Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More...
 
OutputDataType & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
OutputDataType & Delta () const
 Get the delta.
 
OutputDataType & Delta ()
 Modify the delta.
 
size_t const & Index () const
 Get the column index.
 
size_t const & NumElements () const
 Get the number of elements selected.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::Select< InputDataType, OutputDataType >

The select module selects the specified column from a given input matrix.

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Constructor & Destructor Documentation

◆ Select()

template<typename InputDataType , typename OutputDataType >
mlpack::ann::Select< InputDataType, OutputDataType >::Select ( const size_t  index = 0,
const size_t  elements = 0 
)

Create the Select object.

Parameters
indexThe column which should be extracted from the given input.
elementsThe number of elements that should be used.

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::Select< InputDataType, OutputDataType >::Backward ( const arma::Mat< eT > &  ,
const arma::Mat< eT > &  gy,
arma::Mat< eT > &  g 
)

Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.

Using the results from the feed forward pass.

Parameters
*(input) The propagated input activation.
gyThe backpropagated error.
gThe calculated gradient.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::Select< InputDataType, OutputDataType >::Forward ( const arma::Mat< eT > &  input,
arma::Mat< eT > &  output 
)

Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.

Parameters
inputInput data used for evaluating the specified function.
outputResulting output activation.

The documentation for this class was generated from the following files: