mlpack
|
Implementation of the Sequential class. More...
#include <sequential.hpp>
Public Member Functions | |
Sequential (const bool model=true) | |
Create the Sequential object using the specified parameters. More... | |
Sequential (const bool model, const bool ownsLayers) | |
Create the Sequential object using the specified parameters. More... | |
Sequential (const Sequential &layer) | |
Copy constructor. | |
Sequential & | operator= (const Sequential &layer) |
Copy assignment operator. | |
~Sequential () | |
Destroy the Sequential object. | |
template<typename eT > | |
void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template<typename eT > | |
void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
Ordinary feed backward pass of a neural network, using 3rd-order tensors as input, calculating the function f(x) by propagating x backwards through f. More... | |
template<typename eT > | |
void | Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &error, arma::Mat< eT > &) |
template<class LayerType , class... Args> | |
void | Add (Args... args) |
void | Add (LayerTypes< CustomLayers... > layer) |
std::vector< LayerTypes< CustomLayers... > > & | Model () |
Return the model modules. | |
const arma::mat & | Parameters () const |
Return the initial point for the optimization. | |
arma::mat & | Parameters () |
Modify the initial point for the optimization. | |
arma::mat const & | InputParameter () const |
Get the input parameter. | |
arma::mat & | InputParameter () |
Modify the input parameter. | |
arma::mat const & | OutputParameter () const |
Get the output parameter. | |
arma::mat & | OutputParameter () |
Modify the output parameter. | |
arma::mat const & | Delta () const |
Get the delta. | |
arma::mat & | Delta () |
Modify the delta. | |
arma::mat const & | Gradient () const |
Get the gradient. | |
arma::mat & | Gradient () |
Modify the gradient. | |
size_t | InputShape () const |
template<typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. | |
Implementation of the Sequential class.
The sequential class works as a feed-forward fully connected network container which plugs various layers together.
This class can also be used as a container for a residual block. In that case, the sizes of the input and output matrices of this class should be equal. A typedef has been added for use as a Residual<> class.
For more information, refer the following paper.
Note: If this class is used as the first layer of a network, it should be preceded by IdentityLayer<>.
Note: This class should at least have two layers for a call to its Gradient() function.
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Residual | If true, use the object as a Residual block. |
mlpack::ann::Sequential< InputDataType, OutputDataType, Residual, CustomLayers >::Sequential | ( | const bool | model = true | ) |
Create the Sequential object using the specified parameters.
model | Expose the all network modules. |
mlpack::ann::Sequential< InputDataType, OutputDataType, Residual, CustomLayers >::Sequential | ( | const bool | model, |
const bool | ownsLayers | ||
) |
Create the Sequential object using the specified parameters.
model | Expose all the network modules. |
ownsLayers | If true, then this module will delete its layers when deallocated. |
void mlpack::ann::Sequential< InputDataType, OutputDataType, Residual, CustomLayers >::Backward | ( | const arma::Mat< eT > & | , |
const arma::Mat< eT > & | gy, | ||
arma::Mat< eT > & | g | ||
) |
Ordinary feed backward pass of a neural network, using 3rd-order tensors as input, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed forward pass.
* | (input) The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
void mlpack::ann::Sequential< InputDataType, OutputDataType, Residual, CustomLayers >::Forward | ( | const arma::Mat< eT > & | input, |
arma::Mat< eT > & | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |