|
|
| SigmoidCrossEntropyError () |
| | Create the SigmoidCrossEntropyError object.
|
| |
| template<typename PredictionType , typename TargetType > |
| PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| | Computes the Sigmoid CrossEntropy Error functions. More...
|
| |
| template<typename PredictionType , typename TargetType , typename LossType > |
| void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| | Ordinary feed backward pass of a neural network. More...
|
| |
|
OutputDataType & | OutputParameter () const |
| | Get the output parameter.
|
| |
|
OutputDataType & | OutputParameter () |
| | Modify the output parameter.
|
| |
|
template<typename Archive > |
| void | serialize (Archive &ar, const uint32_t) |
| | Serialize the layer.
|
| |
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::SigmoidCrossEntropyError< InputDataType, OutputDataType >
The SigmoidCrossEntropyError performance function measures the network's performance according to the cross-entropy function between the input and target distributions.
This function calculates the cross entropy given the real values instead of providing the sigmoid activations. The function uses this equivalent formulation: \(max(x, 0) - x * z + \log(1 + e^{-|x|})\) where x = input and z = target.
For more information, see the following paper.
@article{Janocha2017
title = {On Loss Functions for Deep Neural Networks in Classification},
author = {Katarzyna Janocha, Wojciech Marian Czarnecki},
url = {http:
journal = {CoRR},
eprint = {arXiv:1702.05659},
year = {2017}
}
- Template Parameters
-
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |