#include <soft_margin_loss.hpp>
|
| SoftMarginLoss (const bool reduction=true) |
| Create the SoftMarginLoss object. More...
|
|
template<typename PredictionType , typename TargetType > |
PredictionType::elem_type | Forward (const PredictionType &prediction, const TargetType &target) |
| Computes the Soft Margin Loss function. More...
|
|
template<typename PredictionType , typename TargetType , typename LossType > |
void | Backward (const PredictionType &prediction, const TargetType &target, LossType &loss) |
| Ordinary feed backward pass of a neural network. More...
|
|
OutputDataType & | OutputParameter () const |
| Get the output parameter.
|
|
OutputDataType & | OutputParameter () |
| Modify the output parameter.
|
|
bool | Reduction () const |
| Get the type of reduction used.
|
|
bool & | Reduction () |
| Modify the type of reduction used.
|
|
template<typename Archive > |
void | serialize (Archive &ar, const uint32_t version) |
| Serialize the layer.
|
|
template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::SoftMarginLoss< InputDataType, OutputDataType >
- Template Parameters
-
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
◆ SoftMarginLoss()
template<typename InputDataType , typename OutputDataType >
Create the SoftMarginLoss object.
- Parameters
-
reduction | Specifies the reduction to apply to the output. If false, 'mean' reduction is used, where sum of the output will be divided by the number of elements in the output. If true, 'sum' reduction is used and the output will be summed. It is set to true by default. |
◆ Backward()
template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType , typename LossType >
void mlpack::ann::SoftMarginLoss< InputDataType, OutputDataType >::Backward |
( |
const PredictionType & |
prediction, |
|
|
const TargetType & |
target, |
|
|
LossType & |
loss |
|
) |
| |
Ordinary feed backward pass of a neural network.
- Parameters
-
prediction | Predictions used for evaluating the specified loss function. |
target | The target vector. |
loss | The calculated error. |
◆ Forward()
template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType >
PredictionType::elem_type mlpack::ann::SoftMarginLoss< InputDataType, OutputDataType >::Forward |
( |
const PredictionType & |
prediction, |
|
|
const TargetType & |
target |
|
) |
| |
Computes the Soft Margin Loss function.
- Parameters
-
prediction | Predictions used for evaluating the specified loss function. |
target | The target vector with same shape as input. |
The documentation for this class was generated from the following files: