mlpack
Public Member Functions | List of all members
mlpack::ann::SoftMarginLoss< InputDataType, OutputDataType > Class Template Reference

#include <soft_margin_loss.hpp>

Public Member Functions

 SoftMarginLoss (const bool reduction=true)
 Create the SoftMarginLoss object. More...
 
template<typename PredictionType , typename TargetType >
PredictionType::elem_type Forward (const PredictionType &prediction, const TargetType &target)
 Computes the Soft Margin Loss function. More...
 
template<typename PredictionType , typename TargetType , typename LossType >
void Backward (const PredictionType &prediction, const TargetType &target, LossType &loss)
 Ordinary feed backward pass of a neural network. More...
 
OutputDataType & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
bool Reduction () const
 Get the type of reduction used.
 
bool & Reduction ()
 Modify the type of reduction used.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t version)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::SoftMarginLoss< InputDataType, OutputDataType >

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Constructor & Destructor Documentation

◆ SoftMarginLoss()

template<typename InputDataType , typename OutputDataType >
mlpack::ann::SoftMarginLoss< InputDataType, OutputDataType >::SoftMarginLoss ( const bool  reduction = true)

Create the SoftMarginLoss object.

Parameters
reductionSpecifies the reduction to apply to the output. If false, 'mean' reduction is used, where sum of the output will be divided by the number of elements in the output. If true, 'sum' reduction is used and the output will be summed. It is set to true by default.

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType , typename LossType >
void mlpack::ann::SoftMarginLoss< InputDataType, OutputDataType >::Backward ( const PredictionType &  prediction,
const TargetType &  target,
LossType &  loss 
)

Ordinary feed backward pass of a neural network.

Parameters
predictionPredictions used for evaluating the specified loss function.
targetThe target vector.
lossThe calculated error.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename PredictionType , typename TargetType >
PredictionType::elem_type mlpack::ann::SoftMarginLoss< InputDataType, OutputDataType >::Forward ( const PredictionType &  prediction,
const TargetType &  target 
)

Computes the Soft Margin Loss function.

Parameters
predictionPredictions used for evaluating the specified loss function.
targetThe target vector with same shape as input.

The documentation for this class was generated from the following files: