mlpack
Public Member Functions | List of all members
mlpack::ann::Softmax< InputDataType, OutputDataType > Class Template Reference

Implementation of the Softmax layer. More...

#include <softmax.hpp>

Public Member Functions

 Softmax ()
 Create the Softmax object.
 
template<typename InputType , typename OutputType >
void Forward (const InputType &input, OutputType &output)
 Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
 
template<typename eT >
void Backward (const arma::Mat< eT > &input, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
 Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More...
 
OutputDataType & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
size_t WeightSize () const
 Get the size of the weights.
 
InputDataType & Delta () const
 Get the delta.
 
InputDataType & Delta ()
 Modify the delta.
 
template<typename Archive >
void serialize (Archive &, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::Softmax< InputDataType, OutputDataType >

Implementation of the Softmax layer.

The softmax function takes as input a vector of K real numbers, and normalizes it into a probability distribution consisting of K probabilities proportional to the exponentials of the input numbers. It should be used for inference only and not with NLL loss (use LogSoftMax instead).

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::Softmax< InputDataType, OutputDataType >::Backward ( const arma::Mat< eT > &  input,
const arma::Mat< eT > &  gy,
arma::Mat< eT > &  g 
)

Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.

Using the results from the feed forward pass.

Parameters
inputThe propagated input activation.
gyThe backpropagated error.
gThe calculated gradient.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename InputType , typename OutputType >
void mlpack::ann::Softmax< InputDataType, OutputDataType >::Forward ( const InputType &  input,
OutputType &  output 
)

Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.

Parameters
inputInput data used for evaluating the specified function.
outputResulting output activation.

The documentation for this class was generated from the following files: