mlpack
Public Member Functions | List of all members
mlpack::ann::Subview< InputDataType, OutputDataType > Class Template Reference

Implementation of the subview layer. More...

#include <subview.hpp>

Public Member Functions

 Subview (const size_t inSize=1, const size_t beginRow=0, const size_t endRow=0, const size_t beginCol=0, const size_t endCol=0)
 Create the Subview layer object using the specified range of input to accept. More...
 
template<typename InputType , typename OutputType >
void Forward (const InputType &input, OutputType &output)
 Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
 
template<typename eT >
void Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
 Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More...
 
OutputDataType const & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
OutputDataType const & Delta () const
 Get the delta.
 
OutputDataType & Delta ()
 Modify the delta.
 
size_t InSize () const
 Get the width of each sample.
 
size_t const & BeginRow () const
 Get the starting row index of subview vector or matrix.
 
size_t & BeginRow ()
 Modify the width of each sample.
 
size_t const & EndRow () const
 Get the ending row index of subview vector or matrix.
 
size_t & EndRow ()
 Modify the width of each sample.
 
size_t const & BeginCol () const
 Get the width of each sample.
 
size_t & BeginCol ()
 Modify the width of each sample.
 
size_t const & EndCol () const
 Get the ending column index of subview vector or matrix.
 
size_t & EndCol ()
 Modify the width of each sample.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::Subview< InputDataType, OutputDataType >

Implementation of the subview layer.

The subview layer modifies the input to a submatrix of required size.

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Constructor & Destructor Documentation

◆ Subview()

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
mlpack::ann::Subview< InputDataType, OutputDataType >::Subview ( const size_t  inSize = 1,
const size_t  beginRow = 0,
const size_t  endRow = 0,
const size_t  beginCol = 0,
const size_t  endCol = 0 
)
inline

Create the Subview layer object using the specified range of input to accept.

Parameters
inSizeWidth of sample.
beginRowStarting row index.
endRowEnding row index.
beginColStarting column index.
endColEnding column index.

Member Function Documentation

◆ Backward()

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
template<typename eT >
void mlpack::ann::Subview< InputDataType, OutputDataType >::Backward ( const arma::Mat< eT > &  ,
const arma::Mat< eT > &  gy,
arma::Mat< eT > &  g 
)
inline

Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.

Using the results from the feed forward pass.

Parameters
*(input) The propagated input activation.
gyThe backpropagated error.
gThe calculated gradient.

◆ Forward()

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
template<typename InputType , typename OutputType >
void mlpack::ann::Subview< InputDataType, OutputDataType >::Forward ( const InputType &  input,
OutputType &  output 
)
inline

Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.

Parameters
inputInput data used for evaluating the specified function.
outputResulting output activation.

The documentation for this class was generated from the following file: