|
mlpack
|
Declaration of the VirtualBatchNorm layer class. More...
#include <virtual_batch_norm.hpp>
Public Member Functions | |
| VirtualBatchNorm () | |
| Create the VirtualBatchNorm object. More... | |
| template<typename eT > | |
| VirtualBatchNorm (const arma::Mat< eT > &referenceBatch, const size_t size, const double eps=1e-8) | |
| Create the VirtualBatchNorm layer object for a specified number of input units. More... | |
| void | Reset () |
| Reset the layer parameters. | |
| template<typename eT > | |
| void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| Forward pass of the Virtual Batch Normalization layer. More... | |
| template<typename eT > | |
| void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| Backward pass through the layer. More... | |
| template<typename eT > | |
| void | Gradient (const arma::Mat< eT > &, const arma::Mat< eT > &error, arma::Mat< eT > &gradient) |
| Calculate the gradient using the output delta and the input activations. More... | |
| OutputDataType const & | Parameters () const |
| Get the parameters. | |
| OutputDataType & | Parameters () |
| Modify the parameters. | |
| OutputDataType const & | OutputParameter () const |
| Get the output parameter. | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. | |
| OutputDataType const & | Delta () const |
| Get the delta. | |
| OutputDataType & | Delta () |
| Modify the delta. | |
| OutputDataType const & | Gradient () const |
| Get the gradient. | |
| OutputDataType & | Gradient () |
| Modify the gradient. | |
| size_t | InSize () const |
| Get the number of input units. | |
| double | Epsilon () const |
| Get the epsilon value. | |
| template<typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. | |
Declaration of the VirtualBatchNorm layer class.
Instead of using the batch statistics for normalizing on a mini-batch, it uses a reference subset of the data for calculating the normalization statistics.
For more information, refer to the following paper,
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| mlpack::ann::VirtualBatchNorm< InputDataType, OutputDataType >::VirtualBatchNorm | ( | ) |
Create the VirtualBatchNorm object.
Artificial Neural Network.
| mlpack::ann::VirtualBatchNorm< InputDataType, OutputDataType >::VirtualBatchNorm | ( | const arma::Mat< eT > & | referenceBatch, |
| const size_t | size, | ||
| const double | eps = 1e-8 |
||
| ) |
Create the VirtualBatchNorm layer object for a specified number of input units.
| referenceBatch | The data from which the normalization statistics are computed. |
| size | The number of input units / channels. |
| eps | The epsilon added to variance to ensure numerical stability. |
| void mlpack::ann::VirtualBatchNorm< InputDataType, OutputDataType >::Backward | ( | const arma::Mat< eT > & | , |
| const arma::Mat< eT > & | gy, | ||
| arma::Mat< eT > & | g | ||
| ) |
Backward pass through the layer.
| * | (input) The input activations. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
| void mlpack::ann::VirtualBatchNorm< InputDataType, OutputDataType >::Forward | ( | const arma::Mat< eT > & | input, |
| arma::Mat< eT > & | output | ||
| ) |
Forward pass of the Virtual Batch Normalization layer.
Transforms the input data into zero mean and unit variance, scales the data by a factor gamma and shifts it by beta.
| input | Input data for the layer. |
| output | Resulting output activations. |
| void mlpack::ann::VirtualBatchNorm< InputDataType, OutputDataType >::Gradient | ( | const arma::Mat< eT > & | , |
| const arma::Mat< eT > & | error, | ||
| arma::Mat< eT > & | gradient | ||
| ) |
Calculate the gradient using the output delta and the input activations.
| * | (input) The input activations. |
| error | The calculated error. |
| gradient | The calculated gradient. |
1.8.13