mlpack
Public Member Functions | List of all members
mlpack::kernel::EpanechnikovKernel Class Reference

The Epanechnikov kernel, defined as. More...

#include <epanechnikov_kernel.hpp>

Public Member Functions

 EpanechnikovKernel (const double bandwidth=1.0)
 Instantiate the Epanechnikov kernel with the given bandwidth (default 1.0). More...
 
template<typename VecTypeA , typename VecTypeB >
double Evaluate (const VecTypeA &a, const VecTypeB &b) const
 Evaluate the Epanechnikov kernel on the given two inputs. More...
 
double Evaluate (const double distance) const
 Evaluate the Epanechnikov kernel given that the distance between the two input points is known. More...
 
double Gradient (const double distance) const
 Evaluate the Gradient of Epanechnikov kernel given that the distance between the two input points is known. More...
 
double GradientForSquaredDistance (const double distanceSquared) const
 Evaluate the Gradient of Epanechnikov kernel given that the squared distance between the two input points is known. More...
 
template<typename VecTypeA , typename VecTypeB >
double ConvolutionIntegral (const VecTypeA &a, const VecTypeB &b)
 Obtains the convolution integral [integral of K(||x-a||) K(||b-x||) dx] for the two vectors. More...
 
double Normalizer (const size_t dimension)
 Compute the normalizer of this Epanechnikov kernel for the given dimension. More...
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t version)
 Serialize the kernel.
 

Detailed Description

The Epanechnikov kernel, defined as.

\[ K(x, y) = \max \{0, 1 - || x - y ||^2_2 / b^2 \} \]

where \( b \) is the bandwidth the of the kernel (defaults to 1.0).

Constructor & Destructor Documentation

◆ EpanechnikovKernel()

mlpack::kernel::EpanechnikovKernel::EpanechnikovKernel ( const double  bandwidth = 1.0)
inline

Instantiate the Epanechnikov kernel with the given bandwidth (default 1.0).

Parameters
bandwidthBandwidth of the kernel.

Member Function Documentation

◆ ConvolutionIntegral()

template<typename VecTypeA , typename VecTypeB >
double mlpack::kernel::EpanechnikovKernel::ConvolutionIntegral ( const VecTypeA &  a,
const VecTypeB &  b 
)

Obtains the convolution integral [integral of K(||x-a||) K(||b-x||) dx] for the two vectors.

Template Parameters
VecTypeType of vector (arma::vec, arma::spvec should be expected).
Parameters
aFirst vector.
bSecond vector.
Returns
the convolution integral value.
Template Parameters
VecTypeAType of first vector (arma::vec, arma::sp_vec should be expected).
VecTypeBType of second vector (arma::vec, arma::sp_vec).
Parameters
aFirst vector.
bSecond vector.
Returns
the convolution integral value.

◆ Evaluate() [1/2]

template<typename VecTypeA , typename VecTypeB >
double mlpack::kernel::EpanechnikovKernel::Evaluate ( const VecTypeA &  a,
const VecTypeB &  b 
) const
inline

Evaluate the Epanechnikov kernel on the given two inputs.

Template Parameters
VecTypeAType of first vector.
VecTypeBType of second vector.
Parameters
aOne input vector.
bThe other input vector.

◆ Evaluate() [2/2]

double EpanechnikovKernel::Evaluate ( const double  distance) const

Evaluate the Epanechnikov kernel given that the distance between the two input points is known.

Evaluate the kernel not for two points but for a numerical value.

◆ Gradient()

double EpanechnikovKernel::Gradient ( const double  distance) const

Evaluate the Gradient of Epanechnikov kernel given that the distance between the two input points is known.

Evaluate gradient of the kernel not for two points but for a numerical value.

◆ GradientForSquaredDistance()

double EpanechnikovKernel::GradientForSquaredDistance ( const double  distanceSquared) const

Evaluate the Gradient of Epanechnikov kernel given that the squared distance between the two input points is known.

Evaluate gradient of the kernel not for two points but for a numerical value.

◆ Normalizer()

double EpanechnikovKernel::Normalizer ( const size_t  dimension)

Compute the normalizer of this Epanechnikov kernel for the given dimension.

Parameters
dimensionDimension to calculate the normalizer for.

The documentation for this class was generated from the following files: