|
mlpack
|
Kernel functions. More...
Classes | |
| class | CauchyKernel |
| The Cauchy kernel. More... | |
| class | CosineDistance |
| The cosine distance (or cosine similarity). More... | |
| class | EpanechnikovKernel |
| The Epanechnikov kernel, defined as. More... | |
| class | ExampleKernel |
| An example kernel function. More... | |
| class | GaussianKernel |
| The standard Gaussian kernel. More... | |
| class | HyperbolicTangentKernel |
| Hyperbolic tangent kernel. More... | |
| class | KernelTraits |
| This is a template class that can provide information about various kernels. More... | |
| class | KernelTraits< CauchyKernel > |
| Kernel traits for the Cauchy kernel. More... | |
| class | KernelTraits< CosineDistance > |
| Kernel traits for the cosine distance. More... | |
| class | KernelTraits< EpanechnikovKernel > |
| Kernel traits for the Epanechnikov kernel. More... | |
| class | KernelTraits< GaussianKernel > |
| Kernel traits for the Gaussian kernel. More... | |
| class | KernelTraits< LaplacianKernel > |
| Kernel traits of the Laplacian kernel. More... | |
| class | KernelTraits< SphericalKernel > |
| Kernel traits for the spherical kernel. More... | |
| class | KernelTraits< TriangularKernel > |
| Kernel traits for the triangular kernel. More... | |
| class | KMeansSelection |
| Implementation of the kmeans sampling scheme. More... | |
| class | LaplacianKernel |
| The standard Laplacian kernel. More... | |
| class | LinearKernel |
| The simple linear kernel (dot product). More... | |
| class | NystroemMethod |
| class | OrderedSelection |
| class | PolynomialKernel |
| The simple polynomial kernel. More... | |
| class | PSpectrumStringKernel |
| The p-spectrum string kernel. More... | |
| class | RandomSelection |
| class | SphericalKernel |
| The spherical kernel, which is 1 when the distance between the two argument points is less than or equal to the bandwidth, or 0 otherwise. More... | |
| class | TriangularKernel |
| The trivially simple triangular kernel, defined by. More... | |
Kernel functions.
This namespace contains kernel functions, which evaluate some kernel function \( K(x, y) \) for some arbitrary vectors \( x \) and \( y \) of the same dimension. The single restriction on the function \( K(x, y) \) is that it must satisfy Mercer's condition:
\[ \int \int K(x, y) g(x) g(y) dx dy \ge 0 \]
for all square integrable functions \( g(x) \).
The kernels in this namespace all implement the KernelType policy. For more information, see The KernelType policy documentation.
1.8.13