mlpack
|
Kernel functions. More...
Classes | |
class | CauchyKernel |
The Cauchy kernel. More... | |
class | CosineDistance |
The cosine distance (or cosine similarity). More... | |
class | EpanechnikovKernel |
The Epanechnikov kernel, defined as. More... | |
class | ExampleKernel |
An example kernel function. More... | |
class | GaussianKernel |
The standard Gaussian kernel. More... | |
class | HyperbolicTangentKernel |
Hyperbolic tangent kernel. More... | |
class | KernelTraits |
This is a template class that can provide information about various kernels. More... | |
class | KernelTraits< CauchyKernel > |
Kernel traits for the Cauchy kernel. More... | |
class | KernelTraits< CosineDistance > |
Kernel traits for the cosine distance. More... | |
class | KernelTraits< EpanechnikovKernel > |
Kernel traits for the Epanechnikov kernel. More... | |
class | KernelTraits< GaussianKernel > |
Kernel traits for the Gaussian kernel. More... | |
class | KernelTraits< LaplacianKernel > |
Kernel traits of the Laplacian kernel. More... | |
class | KernelTraits< SphericalKernel > |
Kernel traits for the spherical kernel. More... | |
class | KernelTraits< TriangularKernel > |
Kernel traits for the triangular kernel. More... | |
class | KMeansSelection |
Implementation of the kmeans sampling scheme. More... | |
class | LaplacianKernel |
The standard Laplacian kernel. More... | |
class | LinearKernel |
The simple linear kernel (dot product). More... | |
class | NystroemMethod |
class | OrderedSelection |
class | PolynomialKernel |
The simple polynomial kernel. More... | |
class | PSpectrumStringKernel |
The p-spectrum string kernel. More... | |
class | RandomSelection |
class | SphericalKernel |
The spherical kernel, which is 1 when the distance between the two argument points is less than or equal to the bandwidth, or 0 otherwise. More... | |
class | TriangularKernel |
The trivially simple triangular kernel, defined by. More... | |
Kernel functions.
This namespace contains kernel functions, which evaluate some kernel function \( K(x, y) \) for some arbitrary vectors \( x \) and \( y \) of the same dimension. The single restriction on the function \( K(x, y) \) is that it must satisfy Mercer's condition:
\[ \int \int K(x, y) g(x) g(y) dx dy \ge 0 \]
for all square integrable functions \( g(x) \).
The kernels in this namespace all implement the KernelType policy. For more information, see The KernelType policy documentation.