mlpack
Public Member Functions | List of all members
mlpack::kernel::TriangularKernel Class Reference

The trivially simple triangular kernel, defined by. More...

#include <triangular_kernel.hpp>

Public Member Functions

 TriangularKernel (const double bandwidth=1.0)
 Initialize the triangular kernel with the given bandwidth (default 1.0). More...
 
template<typename VecTypeA , typename VecTypeB >
double Evaluate (const VecTypeA &a, const VecTypeB &b) const
 Evaluate the triangular kernel for the two given vectors. More...
 
double Evaluate (const double distance) const
 Evaluate the triangular kernel given that the distance between the two points is known. More...
 
double Gradient (const double distance) const
 Evaluate the gradient of triangular kernel given that the distance between the two points is known. More...
 
double Bandwidth () const
 Get the bandwidth of the kernel.
 
double & Bandwidth ()
 Modify the bandwidth of the kernel.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the kernel.
 

Detailed Description

The trivially simple triangular kernel, defined by.

\[ K(x, y) = \max \{ 0, 1 - \frac{|| x - y ||_2}{b} \} \]

where \( b \) is the bandwidth of the kernel.

Constructor & Destructor Documentation

◆ TriangularKernel()

mlpack::kernel::TriangularKernel::TriangularKernel ( const double  bandwidth = 1.0)
inline

Initialize the triangular kernel with the given bandwidth (default 1.0).

Parameters
bandwidthBandwidth of the triangular kernel.

Member Function Documentation

◆ Evaluate() [1/2]

template<typename VecTypeA , typename VecTypeB >
double mlpack::kernel::TriangularKernel::Evaluate ( const VecTypeA &  a,
const VecTypeB &  b 
) const
inline

Evaluate the triangular kernel for the two given vectors.

Template Parameters
VecTypeAType of first vector.
VecTypeBType of second vector.
Parameters
aFirst vector.
bSecond vector.

◆ Evaluate() [2/2]

double mlpack::kernel::TriangularKernel::Evaluate ( const double  distance) const
inline

Evaluate the triangular kernel given that the distance between the two points is known.

Parameters
distanceThe distance between the two points.

◆ Gradient()

double mlpack::kernel::TriangularKernel::Gradient ( const double  distance) const
inline

Evaluate the gradient of triangular kernel given that the distance between the two points is known.

Parameters
distanceThe distance between the two points.

The documentation for this class was generated from the following file: