mlpack
|
This class performs kernel principal components analysis (Kernel PCA), for a given kernel. More...
#include <kernel_pca.hpp>
Public Member Functions | |
KernelPCA (const KernelType kernel=KernelType(), const bool centerTransformedData=false) | |
Construct the KernelPCA object, optionally passing a kernel. More... | |
void | Apply (const arma::mat &data, arma::mat &transformedData, arma::vec &eigval, arma::mat &eigvec, const size_t newDimension) |
Apply Kernel Principal Components Analysis to the provided data set. More... | |
void | Apply (const arma::mat &data, arma::mat &transformedData, arma::vec &eigval, arma::mat &eigvec) |
Apply Kernel Principal Components Analysis to the provided data set. More... | |
void | Apply (const arma::mat &data, arma::mat &transformedData, arma::vec &eigval) |
Apply Kernel Principal Component Analysis to the provided data set. More... | |
void | Apply (arma::mat &data, const size_t newDimension) |
Apply dimensionality reduction using Kernel Principal Component Analysis to the provided data set. More... | |
const KernelType & | Kernel () const |
Get the kernel. | |
KernelType & | Kernel () |
Modify the kernel. | |
bool | CenterTransformedData () const |
Return whether or not the transformed data is centered. | |
bool & | CenterTransformedData () |
Return whether or not the transformed data is centered. | |
This class performs kernel principal components analysis (Kernel PCA), for a given kernel.
This is a standard machine learning technique and is well-documented on the Internet and in standard texts. It is often used as a dimensionality reduction technique, and can also be useful in mapping linearly inseparable classes of points to different spaces where they are linearly separable.
The performance of the method is highly dependent on the kernel choice. There are numerous available kernels in the mlpack::kernel namespace (see files in mlpack/core/kernels/) and it is easy to write your own; see other implementations for examples.
mlpack::kpca::KernelPCA< KernelType, KernelRule >::KernelPCA | ( | const KernelType | kernel = KernelType() , |
const bool | centerTransformedData = false |
||
) |
Construct the KernelPCA object, optionally passing a kernel.
Optionally, the transformed data can be centered about the origin; to do this, pass 'true' for centerTransformedData. This will take slightly longer (but not much).
kernel | Kernel to be used for computation. |
centerTransformedData | Center transformed data. |
void mlpack::kpca::KernelPCA< KernelType, KernelRule >::Apply | ( | const arma::mat & | data, |
arma::mat & | transformedData, | ||
arma::vec & | eigval, | ||
arma::mat & | eigvec, | ||
const size_t | newDimension | ||
) |
Apply Kernel Principal Components Analysis to the provided data set.
Apply Kernel Principal Component Analysis to the provided data set.
data | Data matrix. |
transformedData | Matrix to output results into. |
eigval | KPCA eigenvalues will be written to this vector. |
eigvec | KPCA eigenvectors will be written to this matrix. |
newDimension | New dimension for the dataset. |
void mlpack::kpca::KernelPCA< KernelType, KernelRule >::Apply | ( | const arma::mat & | data, |
arma::mat & | transformedData, | ||
arma::vec & | eigval, | ||
arma::mat & | eigvec | ||
) |
Apply Kernel Principal Components Analysis to the provided data set.
Apply Kernel Principal Component Analysis to the provided data set.
data | Data matrix. |
transformedData | Matrix to output results into. |
eigval | KPCA eigenvalues will be written to this vector. |
eigvec | KPCA eigenvectors will be written to this matrix. |
void mlpack::kpca::KernelPCA< KernelType, KernelRule >::Apply | ( | const arma::mat & | data, |
arma::mat & | transformedData, | ||
arma::vec & | eigval | ||
) |
Apply Kernel Principal Component Analysis to the provided data set.
data | Data matrix. |
transformedData | Matrix to output results into. |
eigval | KPCA eigenvalues will be written to this vector. |
void mlpack::kpca::KernelPCA< KernelType, KernelRule >::Apply | ( | arma::mat & | data, |
const size_t | newDimension | ||
) |
Apply dimensionality reduction using Kernel Principal Component Analysis to the provided data set.
Use KPCA for dimensionality reduction.
The data matrix will be modified in-place. Note that the dimension can be larger than the existing dimension because KPCA works on the kernel matrix, not the covariance matrix. This means the new dimension can be as large as the number of points (columns) in the dataset. Note that if you specify newDimension to be larger than the current dimension of the data (the number of rows), then it's not really "dimensionality reduction"...
data | Data matrix. |
newDimension | New dimension for the dataset. |