mlpack
|
Tests for the hyper-parameter tuning module. More...
#include <mlpack/core/cv/metrics/mse.hpp>
#include <mlpack/core/cv/metrics/accuracy.hpp>
#include <mlpack/core/cv/simple_cv.hpp>
#include <mlpack/core/hpt/cv_function.hpp>
#include <mlpack/core/hpt/fixed.hpp>
#include <mlpack/core/hpt/hpt.hpp>
#include <mlpack/methods/lars/lars.hpp>
#include <mlpack/methods/logistic_regression/logistic_regression.hpp>
#include <ensmallen.hpp>
#include "catch.hpp"
Classes | |
class | QuadraticFunction< MLAlgorithm, Metric, MatType, PredictionsType, WeightsType > |
This class provides the interface of CV classes, but really implements a simple quadratic function of three variables. More... | |
Functions | |
TEST_CASE ("CVFunctionTest", "[HPTTest]") | |
Test CVFunction runs cross-validation in according with specified fixed arguments and passed parameters. | |
TEST_CASE ("CVFunctionCategoricalTest", "[HPTTest]") | |
Test CVFunction runs cross-validation in according with specified fixed arguments and passed parameters, where the passed parameters are categorical parameters. | |
TEST_CASE ("CVFunctionGradientTest", "[HPTTest]") | |
Test CVFunction approximates gradient in the expected way. | |
void | InitProneToOverfittingData (arma::mat &xs, arma::rowvec &ys, double &validationSize) |
template<typename T1 , typename T2 > | |
void | FindLARSBestLambdas (arma::mat &xs, arma::rowvec &ys, double &validationSize, bool transposeData, bool useCholesky, const T1 &lambda1Set, const T2 &lambda2Set, double &bestLambda1, double &bestLambda2, double &bestObjective) |
TEST_CASE ("GridSearchTest", "[HPTTest]") | |
Test grid-search optimization leads to the best parameters from the specified ones. | |
TEST_CASE ("HPTTest", "[HPTTest]") | |
Test HyperParameterTuner. | |
TEST_CASE ("HPTMaximizationTest", "[HPTTest]") | |
Test HyperParamterTuner maximizes Accuracy rather than minimizes it. | |
TEST_CASE ("HPTGradientDescentTest", "[HPTTest]") | |
Test HyperParameterTuner works with GradientDescent. | |
Tests for the hyper-parameter tuning module.
mlpack is free software; you may redistribute it and/or modify it under the terms of the 3-clause BSD license. You should have received a copy of the 3-clause BSD license along with mlpack. If not, see http://www.opensource.org/licenses/BSD-3-Clause for more information.