compbio
Public Types | Public Member Functions | Static Protected Member Functions | Protected Attributes | List of all members
Eigen::LDLT< _MatrixType, _UpLo > Class Template Reference

Robust Cholesky decomposition of a matrix with pivoting. More...

#include <LDLT.h>

Public Types

enum  {
  RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
  UpLo = _UpLo
}
 
typedef _MatrixType MatrixType
 
typedef MatrixType::Scalar Scalar
 
typedef NumTraits< typename MatrixType::Scalar >::Real RealScalar
 
typedef Eigen::Index Index
 
typedef MatrixType::StorageIndex StorageIndex
 
typedef Matrix< Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1 > TmpMatrixType
 
typedef Transpositions< RowsAtCompileTime, MaxRowsAtCompileTime > TranspositionType
 
typedef PermutationMatrix< RowsAtCompileTime, MaxRowsAtCompileTime > PermutationType
 
typedef internal::LDLT_Traits< MatrixType, UpLo > Traits
 

Public Member Functions

 LDLT ()
 Default Constructor. More...
 
 LDLT (Index size)
 Default Constructor with memory preallocation. More...
 
template<typename InputType >
 LDLT (const EigenBase< InputType > &matrix)
 Constructor with decomposition. More...
 
template<typename InputType >
 LDLT (EigenBase< InputType > &matrix)
 Constructs a LDLT factorization from a given matrix. More...
 
void setZero ()
 Clear any existing decomposition. More...
 
Traits::MatrixU matrixU () const
 
Traits::MatrixL matrixL () const
 
const TranspositionTypetranspositionsP () const
 
Diagonal< const MatrixType > vectorD () const
 
bool isPositive () const
 
bool isNegative (void) const
 
template<typename Rhs >
const Solve< LDLT, Rhs > solve (const MatrixBase< Rhs > &b) const
 
template<typename Derived >
bool solveInPlace (MatrixBase< Derived > &bAndX) const
 
template<typename InputType >
LDLTcompute (const EigenBase< InputType > &matrix)
 
RealScalar rcond () const
 
template<typename Derived >
LDLTrankUpdate (const MatrixBase< Derived > &w, const RealScalar &alpha=1)
 
const MatrixType & matrixLDLT () const
 
MatrixType reconstructedMatrix () const
 
const LDLTadjoint () const
 
Index rows () const
 
Index cols () const
 
ComputationInfo info () const
 Reports whether previous computation was successful. More...
 
template<typename RhsType , typename DstType >
EIGEN_DEVICE_FUNC void _solve_impl (const RhsType &rhs, DstType &dst) const
 
template<typename InputType >
LDLT< MatrixType, _UpLo > & compute (const EigenBase< InputType > &a)
 Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of matrix.
 
template<typename Derived >
LDLT< MatrixType, _UpLo > & rankUpdate (const MatrixBase< Derived > &w, const typename LDLT< MatrixType, _UpLo >::RealScalar &sigma)
 Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. More...
 
template<typename RhsType , typename DstType >
void _solve_impl (const RhsType &rhs, DstType &dst) const
 

Static Protected Member Functions

static void check_template_parameters ()
 

Protected Attributes

MatrixType m_matrix
 
RealScalar m_l1_norm
 
TranspositionType m_transpositions
 
TmpMatrixType m_temporary
 
internal::SignMatrix m_sign
 
bool m_isInitialized
 
ComputationInfo m_info
 

Detailed Description

template<typename _MatrixType, int _UpLo>
class Eigen::LDLT< _MatrixType, _UpLo >

Robust Cholesky decomposition of a matrix with pivoting.

Template Parameters
_MatrixTypethe type of the matrix of which to compute the LDL^T Cholesky decomposition
_UpLothe triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read.

Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite matrix \( A \) such that \( A = P^TLDL^*P \), where P is a permutation matrix, L is lower triangular with a unit diagonal and D is a diagonal matrix.

The decomposition uses pivoting to ensure stability, so that L will have zeros in the bottom right rank(A) - n submatrix. Avoiding the square root on D also stabilizes the computation.

Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.

This class supports the inplace decomposition mechanism.

See also
MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT

Member Typedef Documentation

§ Index

template<typename _MatrixType, int _UpLo>
typedef Eigen::Index Eigen::LDLT< _MatrixType, _UpLo >::Index
Deprecated:
since Eigen 3.3

Constructor & Destructor Documentation

§ LDLT() [1/4]

template<typename _MatrixType, int _UpLo>
Eigen::LDLT< _MatrixType, _UpLo >::LDLT ( )
inline

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via LDLT::compute(const MatrixType&).

§ LDLT() [2/4]

template<typename _MatrixType, int _UpLo>
Eigen::LDLT< _MatrixType, _UpLo >::LDLT ( Index  size)
inlineexplicit

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also
LDLT()

§ LDLT() [3/4]

template<typename _MatrixType, int _UpLo>
template<typename InputType >
Eigen::LDLT< _MatrixType, _UpLo >::LDLT ( const EigenBase< InputType > &  matrix)
inlineexplicit

Constructor with decomposition.

This calculates the decomposition for the input matrix.

See also
LDLT(Index size)

§ LDLT() [4/4]

template<typename _MatrixType, int _UpLo>
template<typename InputType >
Eigen::LDLT< _MatrixType, _UpLo >::LDLT ( EigenBase< InputType > &  matrix)
inlineexplicit

Constructs a LDLT factorization from a given matrix.

This overloaded constructor is provided for inplace decomposition when MatrixType is a Eigen::Ref.

See also
LDLT(const EigenBase&)

Member Function Documentation

§ adjoint()

template<typename _MatrixType, int _UpLo>
const LDLT& Eigen::LDLT< _MatrixType, _UpLo >::adjoint ( ) const
inline
Returns
the adjoint of *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.

This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:

x = decomposition.adjoint().solve(b)

§ info()

template<typename _MatrixType, int _UpLo>
ComputationInfo Eigen::LDLT< _MatrixType, _UpLo >::info ( ) const
inline

Reports whether previous computation was successful.

Returns
Success if computation was succesful, NumericalIssue if the matrix.appears to be negative.

§ isNegative()

template<typename _MatrixType, int _UpLo>
bool Eigen::LDLT< _MatrixType, _UpLo >::isNegative ( void  ) const
inline
Returns
true if the matrix is negative (semidefinite)

§ isPositive()

template<typename _MatrixType, int _UpLo>
bool Eigen::LDLT< _MatrixType, _UpLo >::isPositive ( ) const
inline
Returns
true if the matrix is positive (semidefinite)

§ matrixL()

template<typename _MatrixType, int _UpLo>
Traits::MatrixL Eigen::LDLT< _MatrixType, _UpLo >::matrixL ( ) const
inline
Returns
a view of the lower triangular matrix L

§ matrixLDLT()

template<typename _MatrixType, int _UpLo>
const MatrixType& Eigen::LDLT< _MatrixType, _UpLo >::matrixLDLT ( ) const
inline
Returns
the internal LDLT decomposition matrix

TODO: document the storage layout

§ matrixU()

template<typename _MatrixType, int _UpLo>
Traits::MatrixU Eigen::LDLT< _MatrixType, _UpLo >::matrixU ( ) const
inline
Returns
a view of the upper triangular matrix U

§ rankUpdate()

template<typename _MatrixType, int _UpLo>
template<typename Derived >
LDLT<MatrixType,_UpLo>& Eigen::LDLT< _MatrixType, _UpLo >::rankUpdate ( const MatrixBase< Derived > &  w,
const typename LDLT< MatrixType, _UpLo >::RealScalar &  sigma 
)

Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.

Parameters
wa vector to be incorporated into the decomposition.
sigmaa scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
See also
setZero()

§ rcond()

template<typename _MatrixType, int _UpLo>
RealScalar Eigen::LDLT< _MatrixType, _UpLo >::rcond ( ) const
inline
Returns
an estimate of the reciprocal condition number of the matrix of which *this is the LDLT decomposition.

§ reconstructedMatrix()

template<typename MatrixType , int _UpLo>
MatrixType Eigen::LDLT< MatrixType, _UpLo >::reconstructedMatrix ( ) const
Returns
the matrix represented by the decomposition, i.e., it returns the product: P^T L D L^* P. This function is provided for debug purpose.

§ setZero()

template<typename _MatrixType, int _UpLo>
void Eigen::LDLT< _MatrixType, _UpLo >::setZero ( )
inline

Clear any existing decomposition.

See also
rankUpdate(w,sigma)

§ solve()

template<typename _MatrixType, int _UpLo>
template<typename Rhs >
const Solve<LDLT, Rhs> Eigen::LDLT< _MatrixType, _UpLo >::solve ( const MatrixBase< Rhs > &  b) const
inline
Returns
a solution x of \( A x = b \) using the current decomposition of A.

This function also supports in-place solves using the syntax x = decompositionObject.solve(x) .

More precisely, this method solves \( A x = b \) using the decomposition \( A = P^T L D L^* P \) by solving the systems \( P^T y_1 = b \), \( L y_2 = y_1 \), \( D y_3 = y_2 \), \( L^* y_4 = y_3 \) and \( P x = y_4 \) in succession. If the matrix \( A \) is singular, then \( D \) will also be singular (all the other matrices are invertible). In that case, the least-square solution of \( D y_3 = y_2 \) is computed. This does not mean that this function computes the least-square solution of \( A x = b \) is \( A \) is singular.

See also
MatrixBase::ldlt(), SelfAdjointView::ldlt()

§ transpositionsP()

template<typename _MatrixType, int _UpLo>
const TranspositionType& Eigen::LDLT< _MatrixType, _UpLo >::transpositionsP ( ) const
inline
Returns
the permutation matrix P as a transposition sequence.

§ vectorD()

template<typename _MatrixType, int _UpLo>
Diagonal<const MatrixType> Eigen::LDLT< _MatrixType, _UpLo >::vectorD ( ) const
inline
Returns
the coefficients of the diagonal matrix D

The documentation for this class was generated from the following file: