TooN
Public Member Functions | Public Attributes | List of all members
TooN::ConjugateGradient< Size, Precision > Struct Template Reference

This class provides a nonlinear conjugate-gradient optimizer. More...

#include <conjugate_gradient.h>

Collaboration diagram for TooN::ConjugateGradient< Size, Precision >:
Collaboration graph
[legend]

Public Member Functions

template<class Func , class Deriv >
 ConjugateGradient (const Vector< Size > &start, const Func &func, const Deriv &deriv)
 Initialize the ConjugateGradient class with sensible values. More...
 
template<class Func >
 ConjugateGradient (const Vector< Size > &start, const Func &func, const Vector< Size > &deriv)
 Initialize the ConjugateGradient class with sensible values. More...
 
void init (const Vector< Size > &start, const Precision &func, const Vector< Size > &deriv)
 Initialize the ConjugateGradient class with sensible values. More...
 
template<class Func >
void find_next_point (const Func &func)
 Perform a linesearch from the current point (x) along the current conjugate vector (h). More...
 
bool finished ()
 Check to see it iteration should stop. More...
 
void update_vectors_PR (const Vector< Size > &grad)
 After an iteration, update the gradient and conjugate using the Polak-Ribiere equations. More...
 
template<class Func , class Deriv >
bool iterate (const Func &func, const Deriv &deriv)
 Use this function to iterate over the optimization. More...
 

Public Attributes

const int size
 Dimensionality of the space.
 
Vector< Size > g
 Gradient vector used by the next call to iterate()
 
Vector< Size > h
 Conjugate vector to be searched along in the next call to iterate()
 
Vector< Size > minus_h
 negative of h as this is required to be passed into a function which uses references (so can't be temporary)
 
Vector< Size > old_g
 Gradient vector used to compute $h$ in the last call to iterate()
 
Vector< Size > old_h
 Conjugate vector searched along in the last call to iterate()
 
Vector< Size > x
 Current position (best known point)
 
Vector< Size > old_x
 Previous best known point (not set at construction)
 
Precision y
 Function at \(x\).
 
Precision old_y
 Function at old_x.
 
Precision tolerance
 Tolerance used to determine if the optimization is complete. Defaults to square root of machine precision.
 
Precision epsilon
 Additive term in tolerance to prevent excessive iterations if \(x_\mathrm{optimal} = 0\). Known as ZEPS in numerical recipies. Defaults to 1e-20.
 
int max_iterations
 Maximum number of iterations. Defaults to size \(*100\).
 
Precision bracket_initial_lambda
 Initial stepsize used in bracketing the minimum for the line search. Defaults to 1.
 
Precision linesearch_tolerance
 Tolerance used to determine if the linesearch is complete. Defaults to square root of machine precision.
 
Precision linesearch_epsilon
 Additive term in tolerance to prevent excessive iterations if \(x_\mathrm{optimal} = 0\). Known as ZEPS in numerical recipies. Defaults to 1e-20.
 
int linesearch_max_iterations
 Maximum number of iterations in the linesearch. Defaults to 100.
 
Precision bracket_epsilon
 Minimum size for initial minima bracketing. Below this, it is assumed that the system has converged. Defaults to 1e-20.
 
int iterations
 Number of iterations performed.
 

Detailed Description

template<int Size = Dynamic, class Precision = double>
struct TooN::ConjugateGradient< Size, Precision >

This class provides a nonlinear conjugate-gradient optimizer.

The following code snippet will perform an optimization on the Rosenbrock Bananna function in two dimensions:

double Rosenbrock(const Vector<2>& v)
{
return sq(1 - v[0]) + 100 * sq(v[1] - sq(v[0]));
}
Vector<2> RosenbrockDerivatives(const Vector<2>& v)
{
double x = v[0];
double y = v[1];
Vector<2> ret;
ret[0] = -2+2*x-400*(y-sq(x))*x;
ret[1] = 200*y-200*sq(x);
return ret;
}
int main()
{
ConjugateGradient<2> cg(makeVector(0,0), Rosenbrock, RosenbrockDerivatives);
while(cg.iterate(Rosenbrock, RosenbrockDerivatives))
cout << "y_" << iteration << " = " << cg.y << endl;
cout << "Optimal value: " << cg.y << endl;
}

The chances are that you will want to read the documentation for ConjugateGradient::ConjugateGradient and ConjugateGradient::iterate.

Linesearch is currently performed using golden-section search and conjugate vector updates are performed using the Polak-Ribiere equations. There many tunable parameters, and the internals are readily accessible, so alternative termination conditions etc can easily be substituted. However, ususally these will not be necessary.

Constructor & Destructor Documentation

◆ ConjugateGradient() [1/2]

template<int Size = Dynamic, class Precision = double>
template<class Func , class Deriv >
TooN::ConjugateGradient< Size, Precision >::ConjugateGradient ( const Vector< Size > &  start,
const Func &  func,
const Deriv &  deriv 
)
inline

Initialize the ConjugateGradient class with sensible values.

Parameters
startStarting point, x
funcFunction f to compute \(f(x)\)
derivFunction to compute \(\nabla f(x)\)

◆ ConjugateGradient() [2/2]

template<int Size = Dynamic, class Precision = double>
template<class Func >
TooN::ConjugateGradient< Size, Precision >::ConjugateGradient ( const Vector< Size > &  start,
const Func &  func,
const Vector< Size > &  deriv 
)
inline

Initialize the ConjugateGradient class with sensible values.

Parameters
startStarting point, x
funcFunction f to compute \(f(x)\)
deriv\(\nabla f(x)\)

Member Function Documentation

◆ find_next_point()

template<int Size = Dynamic, class Precision = double>
template<class Func >
void TooN::ConjugateGradient< Size, Precision >::find_next_point ( const Func &  func)
inline

Perform a linesearch from the current point (x) along the current conjugate vector (h).

The linesearch does not make use of derivatives. You probably do not want to use this function. See iterate() instead. This function updates:

  • x
  • old_c
  • y
  • old_y
  • iterations Note that the conjugate direction and gradient are not updated. If bracket_minimum_forward detects a local maximum, then essentially a zero sized step is taken.
    Parameters
    funcFunctor returning the function value at a given point.

◆ finished()

template<int Size = Dynamic, class Precision = double>
bool TooN::ConjugateGradient< Size, Precision >::finished ( )
inline

Check to see it iteration should stop.

You probably do not want to use this function. See iterate() instead. This function updates nothing.

◆ init()

template<int Size = Dynamic, class Precision = double>
void TooN::ConjugateGradient< Size, Precision >::init ( const Vector< Size > &  start,
const Precision &  func,
const Vector< Size > &  deriv 
)
inline

Initialize the ConjugateGradient class with sensible values.

Used internally.

Parameters
startStarting point, x
func\(f(x)\)
deriv\(\nabla f(x)\)

◆ iterate()

template<int Size = Dynamic, class Precision = double>
template<class Func , class Deriv >
bool TooN::ConjugateGradient< Size, Precision >::iterate ( const Func &  func,
const Deriv &  deriv 
)
inline

Use this function to iterate over the optimization.

Note that after iterate returns false, g, h, old_g and old_h will not have been updated. This function updates:

  • x
  • old_c
  • y
  • old_y
  • iterations
  • g*
  • old_g*
  • h*
  • old_h* *'d variables not updated on the last iteration.
    Parameters
    funcFunctor returning the function value at a given point.
    derivFunctor to compute derivatives at the specified point.
    Returns
    Whether to continue.

◆ update_vectors_PR()

template<int Size = Dynamic, class Precision = double>
void TooN::ConjugateGradient< Size, Precision >::update_vectors_PR ( const Vector< Size > &  grad)
inline

After an iteration, update the gradient and conjugate using the Polak-Ribiere equations.

This function updates:

  • g
  • old_g
  • h
  • old_h
    Parameters
    gradThe derivatives of the function at x

The documentation for this struct was generated from the following file: