OSVR-Core
|
Public Types | |
typedef MatrixType::Scalar | Scalar |
Scalar type for matrices of type MatrixType . More... | |
typedef MatrixType::Index | Index |
typedef NumTraits< Scalar >::Real | RealScalar |
Real scalar type for MatrixType . More... | |
typedef internal::plain_col_type< MatrixType, RealScalar >::type | RealVectorType |
Type for vector of eigenvalues as returned by eigenvalues(). More... | |
Public Member Functions | |
ArpackGeneralizedSelfAdjointEigenSolver () | |
Default constructor. More... | |
ArpackGeneralizedSelfAdjointEigenSolver (const MatrixType &A, const MatrixType &B, Index nbrEigenvalues, std::string eigs_sigma="LM", int options=ComputeEigenvectors, RealScalar tol=0.0) | |
Constructor; computes generalized eigenvalues of given matrix with respect to another matrix. More... | |
ArpackGeneralizedSelfAdjointEigenSolver (const MatrixType &A, Index nbrEigenvalues, std::string eigs_sigma="LM", int options=ComputeEigenvectors, RealScalar tol=0.0) | |
Constructor; computes eigenvalues of given matrix. More... | |
ArpackGeneralizedSelfAdjointEigenSolver & | compute (const MatrixType &A, const MatrixType &B, Index nbrEigenvalues, std::string eigs_sigma="LM", int options=ComputeEigenvectors, RealScalar tol=0.0) |
Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library. More... | |
ArpackGeneralizedSelfAdjointEigenSolver & | compute (const MatrixType &A, Index nbrEigenvalues, std::string eigs_sigma="LM", int options=ComputeEigenvectors, RealScalar tol=0.0) |
Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library. More... | |
const Matrix< Scalar, Dynamic, Dynamic > & | eigenvectors () const |
Returns the eigenvectors of given matrix. More... | |
const Matrix< Scalar, Dynamic, 1 > & | eigenvalues () const |
Returns the eigenvalues of given matrix. More... | |
Matrix< Scalar, Dynamic, Dynamic > | operatorSqrt () const |
Computes the positive-definite square root of the matrix. More... | |
Matrix< Scalar, Dynamic, Dynamic > | operatorInverseSqrt () const |
Computes the inverse square root of the matrix. More... | |
ComputationInfo | info () const |
Reports whether previous computation was successful. More... | |
size_t | getNbrConvergedEigenValues () const |
size_t | getNbrIterations () const |
Protected Attributes | |
Matrix< Scalar, Dynamic, Dynamic > | m_eivec |
Matrix< Scalar, Dynamic, 1 > | m_eivalues |
ComputationInfo | m_info |
bool | m_isInitialized |
bool | m_eigenvectorsOk |
size_t | m_nbrConverged |
size_t | m_nbrIterations |
typedef NumTraits<Scalar>::Real Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::RealScalar |
typedef internal::plain_col_type<MatrixType, RealScalar>::type Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::RealVectorType |
Type for vector of eigenvalues as returned by eigenvalues().
This is a column vector with entries of type RealScalar. The length of the vector is the size of nbrEigenvalues
.
typedef MatrixType::Scalar Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::Scalar |
Scalar type for matrices of type MatrixType
.
|
inline |
Default constructor.
The default constructor is for cases in which the user intends to perform decompositions via compute().
|
inline |
Constructor; computes generalized eigenvalues of given matrix with respect to another matrix.
[in] | A | Self-adjoint matrix whose eigenvalues / eigenvectors will computed. By default, the upper triangular part is used, but can be changed through the template parameter. |
[in] | B | Self-adjoint matrix for the generalized eigenvalue problem. |
[in] | nbrEigenvalues | The number of eigenvalues / eigenvectors to compute. Must be less than the size of the input matrix, or an error is returned. |
[in] | eigs_sigma | String containing either "LM", "SM", "LA", or "SA", with respective meanings to find the largest magnitude , smallest magnitude, largest algebraic, or smallest algebraic eigenvalues. Alternatively, this value can contain floating point value in string form, in which case the eigenvalues closest to this value will be found. |
[in] | options | Can be ComputeEigenvectors (default) or EigenvaluesOnly. |
[in] | tol | What tolerance to find the eigenvalues to. Default is 0, which means machine precision. |
This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar) to compute the eigenvalues of the matrix A
with respect to B
. The eigenvectors are computed if options
equals ComputeEigenvectors.
|
inline |
Constructor; computes eigenvalues of given matrix.
[in] | A | Self-adjoint matrix whose eigenvalues / eigenvectors will computed. By default, the upper triangular part is used, but can be changed through the template parameter. |
[in] | nbrEigenvalues | The number of eigenvalues / eigenvectors to compute. Must be less than the size of the input matrix, or an error is returned. |
[in] | eigs_sigma | String containing either "LM", "SM", "LA", or "SA", with respective meanings to find the largest magnitude , smallest magnitude, largest algebraic, or smallest algebraic eigenvalues. Alternatively, this value can contain floating point value in string form, in which case the eigenvalues closest to this value will be found. |
[in] | options | Can be ComputeEigenvectors (default) or EigenvaluesOnly. |
[in] | tol | What tolerance to find the eigenvalues to. Default is 0, which means machine precision. |
This constructor calls compute(const MatrixType&, Index, string, int, RealScalar) to compute the eigenvalues of the matrix A
. The eigenvectors are computed if options
equals ComputeEigenvectors.
ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD > & Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::compute | ( | const MatrixType & | A, |
const MatrixType & | B, | ||
Index | nbrEigenvalues, | ||
std::string | eigs_sigma = "LM" , |
||
int | options = ComputeEigenvectors , |
||
RealScalar | tol = 0.0 |
||
) |
Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library.
[in] | A | Selfadjoint matrix whose eigendecomposition is to be computed. |
[in] | B | Selfadjoint matrix for generalized eigenvalues. |
[in] | nbrEigenvalues | The number of eigenvalues / eigenvectors to compute. Must be less than the size of the input matrix, or an error is returned. |
[in] | eigs_sigma | String containing either "LM", "SM", "LA", or "SA", with respective meanings to find the largest magnitude , smallest magnitude, largest algebraic, or smallest algebraic eigenvalues. Alternatively, this value can contain floating point value in string form, in which case the eigenvalues closest to this value will be found. |
[in] | options | Can be ComputeEigenvectors (default) or EigenvaluesOnly. |
[in] | tol | What tolerance to find the eigenvalues to. Default is 0, which means machine precision. |
*this
This function computes the generalized eigenvalues of A
with respect to B
using ARPACK. The eigenvalues() function can be used to retrieve them. If options
equals ComputeEigenvectors, then the eigenvectors are also computed and can be retrieved by calling eigenvectors().
ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD > & Eigen::ArpackGeneralizedSelfAdjointEigenSolver< MatrixType, MatrixSolver, BisSPD >::compute | ( | const MatrixType & | A, |
Index | nbrEigenvalues, | ||
std::string | eigs_sigma = "LM" , |
||
int | options = ComputeEigenvectors , |
||
RealScalar | tol = 0.0 |
||
) |
Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library.
[in] | A | Selfadjoint matrix whose eigendecomposition is to be computed. |
[in] | nbrEigenvalues | The number of eigenvalues / eigenvectors to compute. Must be less than the size of the input matrix, or an error is returned. |
[in] | eigs_sigma | String containing either "LM", "SM", "LA", or "SA", with respective meanings to find the largest magnitude , smallest magnitude, largest algebraic, or smallest algebraic eigenvalues. Alternatively, this value can contain floating point value in string form, in which case the eigenvalues closest to this value will be found. |
[in] | options | Can be ComputeEigenvectors (default) or EigenvaluesOnly. |
[in] | tol | What tolerance to find the eigenvalues to. Default is 0, which means machine precision. |
*this
This function computes the eigenvalues of A
using ARPACK. The eigenvalues() function can be used to retrieve them. If options
equals ComputeEigenvectors, then the eigenvectors are also computed and can be retrieved by calling eigenvectors().
|
inline |
Returns the eigenvalues of given matrix.
The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix. The eigenvalues are sorted in increasing order.
Example:
Output:
|
inline |
Returns the eigenvectors of given matrix.
Column \( k \) of the returned matrix is an eigenvector corresponding to eigenvalue number \( k \) as returned by eigenvalues(). The eigenvectors are normalized to have (Euclidean) norm equal to one. If this object was used to solve the eigenproblem for the selfadjoint matrix \( A \), then the matrix returned by this function is the matrix \( V \) in the eigendecomposition \( A V = D V \). For the generalized eigenproblem, the matrix returned is the solution \( A V = D B V \)
Example:
Output:
|
inline |
Reports whether previous computation was successful.
Success
if computation was succesful, NoConvergence
otherwise.
|
inline |
Computes the inverse square root of the matrix.
This function uses the eigendecomposition \( A = V D V^{-1} \) to compute the inverse square root as \( V D^{-1/2} V^{-1} \). This is cheaper than first computing the square root with operatorSqrt() and then its inverse with MatrixBase::inverse().
Example:
Output:
|
inline |
Computes the positive-definite square root of the matrix.
The square root of a positive-definite matrix \( A \) is the positive-definite matrix whose square equals \( A \). This function uses the eigendecomposition \( A = V D V^{-1} \) to compute the square root as \( A^{1/2} = V D^{1/2} V^{-1} \).
Example:
Output: