OSVR-Core
Public Types | Public Member Functions | Protected Attributes | List of all members
Eigen::CholmodBase< _MatrixType, _UpLo, Derived > Class Template Reference

The base class for the direct Cholesky factorization of Cholmod. More...

#include <CholmodSupport.h>

Inheritance diagram for Eigen::CholmodBase< _MatrixType, _UpLo, Derived >:
Eigen::internal::noncopyable

Public Types

enum  { UpLo = _UpLo }
 
typedef _MatrixType MatrixType
 
typedef MatrixType::Scalar Scalar
 
typedef MatrixType::RealScalar RealScalar
 
typedef MatrixType CholMatrixType
 
typedef MatrixType::Index Index
 

Public Member Functions

 CholmodBase (const MatrixType &matrix)
 
Index cols () const
 
Index rows () const
 
Derived & derived ()
 
const Derived & derived () const
 
ComputationInfo info () const
 Reports whether previous computation was successful. More...
 
Derived & compute (const MatrixType &matrix)
 Computes the sparse Cholesky decomposition of matrix.
 
template<typename Rhs >
const internal::solve_retval< CholmodBase, Rhs > solve (const MatrixBase< Rhs > &b) const
 
template<typename Rhs >
const internal::sparse_solve_retval< CholmodBase, Rhs > solve (const SparseMatrixBase< Rhs > &b) const
 
void analyzePattern (const MatrixType &matrix)
 Performs a symbolic decomposition on the sparsity pattern of matrix. More...
 
void factorize (const MatrixType &matrix)
 Performs a numeric decomposition of matrix. More...
 
cholmod_common & cholmod ()
 Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations. More...
 
template<typename Rhs , typename Dest >
void _solve (const MatrixBase< Rhs > &b, MatrixBase< Dest > &dest) const
 
template<typename RhsScalar , int RhsOptions, typename RhsIndex , typename DestScalar , int DestOptions, typename DestIndex >
void _solve (const SparseMatrix< RhsScalar, RhsOptions, RhsIndex > &b, SparseMatrix< DestScalar, DestOptions, DestIndex > &dest) const
 
Derived & setShift (const RealScalar &offset)
 Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization. More...
 
template<typename Stream >
void dumpMemory (Stream &)
 

Protected Attributes

cholmod_common m_cholmod
 
cholmod_factor * m_cholmodFactor
 
RealScalar m_shiftOffset [2]
 
ComputationInfo m_info
 
bool m_isInitialized
 
int m_factorizationIsOk
 
int m_analysisIsOk
 

Detailed Description

template<typename _MatrixType, int _UpLo, typename Derived>
class Eigen::CholmodBase< _MatrixType, _UpLo, Derived >

The base class for the direct Cholesky factorization of Cholmod.

See also
class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT

Member Function Documentation

§ analyzePattern()

template<typename _MatrixType, int _UpLo, typename Derived>
void Eigen::CholmodBase< _MatrixType, _UpLo, Derived >::analyzePattern ( const MatrixType &  matrix)
inline

Performs a symbolic decomposition on the sparsity pattern of matrix.

This function is particularly useful when solving for several problems having the same structure.

See also
factorize()

§ cholmod()

template<typename _MatrixType, int _UpLo, typename Derived>
cholmod_common& Eigen::CholmodBase< _MatrixType, _UpLo, Derived >::cholmod ( )
inline

Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.

See the Cholmod user guide for details.

§ factorize()

template<typename _MatrixType, int _UpLo, typename Derived>
void Eigen::CholmodBase< _MatrixType, _UpLo, Derived >::factorize ( const MatrixType &  matrix)
inline

Performs a numeric decomposition of matrix.

The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.

See also
analyzePattern()

§ info()

template<typename _MatrixType, int _UpLo, typename Derived>
ComputationInfo Eigen::CholmodBase< _MatrixType, _UpLo, Derived >::info ( ) const
inline

Reports whether previous computation was successful.

Returns
Success if computation was succesful, NumericalIssue if the matrix.appears to be negative.

§ setShift()

template<typename _MatrixType, int _UpLo, typename Derived>
Derived& Eigen::CholmodBase< _MatrixType, _UpLo, Derived >::setShift ( const RealScalar &  offset)
inline

Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.

During the numerical factorization, an offset term is added to the diagonal coefficients:
d_ii = offset + d_ii

The default is offset=0.

Returns
a reference to *this.

§ solve() [1/2]

template<typename _MatrixType, int _UpLo, typename Derived>
template<typename Rhs >
const internal::solve_retval<CholmodBase, Rhs> Eigen::CholmodBase< _MatrixType, _UpLo, Derived >::solve ( const MatrixBase< Rhs > &  b) const
inline
Returns
the solution x of \( A x = b \) using the current decomposition of A.
See also
compute()

§ solve() [2/2]

template<typename _MatrixType, int _UpLo, typename Derived>
template<typename Rhs >
const internal::sparse_solve_retval<CholmodBase, Rhs> Eigen::CholmodBase< _MatrixType, _UpLo, Derived >::solve ( const SparseMatrixBase< Rhs > &  b) const
inline
Returns
the solution x of \( A x = b \) using the current decomposition of A.
See also
compute()

The documentation for this class was generated from the following file: