OSVR-Core
Modules | Classes | Typedefs | Functions
Geometry_Module

Modules

 Global aligned box typedefs
 Eigen defines several typedef shortcuts for most common aligned box types.
 

Classes

class  Eigen::Map< const Quaternion< _Scalar >, _Options >
 Quaternion expression mapping a constant memory buffer. More...
 
class  Eigen::Map< Quaternion< _Scalar >, _Options >
 Expression of a quaternion from a memory buffer. More...
 
class  Eigen::AlignedBox< _Scalar, _AmbientDim >
 
class  Eigen::AngleAxis< _Scalar >
 
class  Eigen::Hyperplane< _Scalar, _AmbientDim >
 
class  Eigen::ParametrizedLine< _Scalar, _AmbientDim >
 
class  Eigen::Quaternion< _Scalar >
 
class  Eigen::Rotation2D< _Scalar >
 
class  Eigen::Scaling< _Scalar, _Dim >
 
class  Eigen::Transform< _Scalar, _Dim >
 
class  Eigen::Translation< _Scalar, _Dim >
 
class  Eigen::Homogeneous< MatrixType, _Direction >
 
class  Eigen::QuaternionBase< Derived >
 

Typedefs

typedef AngleAxis< float > Eigen::AngleAxisf
 single precision angle-axis type
 
typedef AngleAxis< double > Eigen::AngleAxisd
 double precision angle-axis type
 
typedef Quaternion< float > Eigen::Quaternionf
 single precision quaternion type
 
typedef Quaternion< double > Eigen::Quaterniond
 double precision quaternion type
 
typedef Rotation2D< float > Eigen::Rotation2Df
 single precision 2D rotation type
 
typedef Rotation2D< double > Eigen::Rotation2Dd
 double precision 2D rotation type
 
typedef Scaling< float, 2 > Eigen::Scaling2f
 
typedef Scaling< double, 2 > Eigen::Scaling2d
 
typedef Scaling< float, 3 > Eigen::Scaling3f
 
typedef Scaling< double, 3 > Eigen::Scaling3d
 
typedef Transform< float, 2 > Eigen::Transform2f
 
typedef Transform< float, 3 > Eigen::Transform3f
 
typedef Transform< double, 2 > Eigen::Transform2d
 
typedef Transform< double, 3 > Eigen::Transform3d
 
typedef Translation< float, 2 > Eigen::Translation2f
 
typedef Translation< double, 2 > Eigen::Translation2d
 
typedef Translation< float, 3 > Eigen::Translation3f
 
typedef Translation< double, 3 > Eigen::Translation3d
 
typedef Map< Quaternion< float >, 0 > Eigen::QuaternionMapf
 Map an unaligned array of single precision scalars as a quaternion.
 
typedef Map< Quaternion< double >, 0 > Eigen::QuaternionMapd
 Map an unaligned array of double precision scalars as a quaternion.
 
typedef Map< Quaternion< float >, AlignedEigen::QuaternionMapAlignedf
 Map a 16-byte aligned array of single precision scalars as a quaternion.
 
typedef Map< Quaternion< double >, AlignedEigen::QuaternionMapAlignedd
 Map a 16-byte aligned array of double precision scalars as a quaternion.
 
typedef DiagonalMatrix< float, 2 > Eigen::AlignedScaling2f
 
typedef DiagonalMatrix< double, 2 > Eigen::AlignedScaling2d
 
typedef DiagonalMatrix< float, 3 > Eigen::AlignedScaling3f
 
typedef DiagonalMatrix< double, 3 > Eigen::AlignedScaling3d
 
typedef Transform< float, 2, IsometryEigen::Isometry2f
 
typedef Transform< float, 3, IsometryEigen::Isometry3f
 
typedef Transform< double, 2, IsometryEigen::Isometry2d
 
typedef Transform< double, 3, IsometryEigen::Isometry3d
 
typedef Transform< float, 2, AffineEigen::Affine2f
 
typedef Transform< float, 3, AffineEigen::Affine3f
 
typedef Transform< double, 2, AffineEigen::Affine2d
 
typedef Transform< double, 3, AffineEigen::Affine3d
 
typedef Transform< float, 2, AffineCompactEigen::AffineCompact2f
 
typedef Transform< float, 3, AffineCompactEigen::AffineCompact3f
 
typedef Transform< double, 2, AffineCompactEigen::AffineCompact2d
 
typedef Transform< double, 3, AffineCompactEigen::AffineCompact3d
 
typedef Transform< float, 2, ProjectiveEigen::Projective2f
 
typedef Transform< float, 3, ProjectiveEigen::Projective3f
 
typedef Transform< double, 2, ProjectiveEigen::Projective2d
 
typedef Transform< double, 3, ProjectiveEigen::Projective3d
 

Functions

template<typename Derived , typename OtherDerived >
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type Eigen::umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
 
Matrix< Scalar, 3, 1 > Eigen::MatrixBase< Derived >::eulerAngles (Index a0, Index a1, Index a2) const
 

Detailed Description

Typedef Documentation

§ AlignedScaling2d

§ AlignedScaling2f

§ AlignedScaling3d

§ AlignedScaling3f

Function Documentation

§ eulerAngles()

template<typename Derived >
Matrix< typename MatrixBase< Derived >::Scalar, 3, 1 > Eigen::MatrixBase< Derived >::eulerAngles ( Index  a0,
Index  a1,
Index  a2 
) const
inline

Returns
the Euler-angles of the rotation matrix *this using the convention defined by the triplet (a0,a1,a2)

Each of the three parameters a0,a1,a2 represents the respective rotation axis as an integer in {0,1,2}. For instance, in:

Vector3f ea = mat.eulerAngles(2, 0, 2);

"2" represents the z axis and "0" the x axis, etc. The returned angles are such that we have the following equality:

mat == AngleAxisf(ea[0], Vector3f::UnitZ())
* AngleAxisf(ea[1], Vector3f::UnitX())
* AngleAxisf(ea[2], Vector3f::UnitZ());

This corresponds to the right-multiply conventions (with right hand side frames).

The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].

See also
class AngleAxis

§ umeyama()

template<typename Derived , typename OtherDerived >
internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type Eigen::umeyama ( const MatrixBase< Derived > &  src,
const MatrixBase< OtherDerived > &  dst,
bool  with_scaling = true 
)

Returns the transformation between two point sets.

The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573

It estimates parameters \( c, \mathbf{R}, \) and \( \mathbf{t} \) such that

\begin{align*} \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 \end{align*}

is minimized.

The algorithm is based on the analysis of the covariance matrix \( \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \) of the input point sets \( \mathbf{x} \) and \( \mathbf{y} \) where \(d\) is corresponding to the dimension (which is typically small). The analysis is involving the SVD having a complexity of \(O(d^3)\) though the actual computational effort lies in the covariance matrix computation which has an asymptotic lower bound of \(O(dm)\) when the input point sets have dimension \(d \times m\).

Currently the method is working only for floating point matrices.

Todo:
Should the return type of umeyama() become a Transform?
Parameters
srcSource points \( \mathbf{x} = \left( x_1, \hdots, x_n \right) \).
dstDestination points \( \mathbf{y} = \left( y_1, \hdots, y_n \right) \).
with_scalingSets \( c=1 \) when false is passed.
Returns
The homogeneous transformation

\begin{align*} T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \end{align*}

minimizing the resudiual above. This transformation is always returned as an Eigen::Matrix.