OSVR-Core
|
Modules | |
Global aligned box typedefs | |
Eigen defines several typedef shortcuts for most common aligned box types. | |
Classes | |
class | Eigen::Map< const Quaternion< _Scalar >, _Options > |
Quaternion expression mapping a constant memory buffer. More... | |
class | Eigen::Map< Quaternion< _Scalar >, _Options > |
Expression of a quaternion from a memory buffer. More... | |
class | Eigen::AlignedBox< _Scalar, _AmbientDim > |
class | Eigen::AngleAxis< _Scalar > |
class | Eigen::Hyperplane< _Scalar, _AmbientDim > |
class | Eigen::ParametrizedLine< _Scalar, _AmbientDim > |
class | Eigen::Quaternion< _Scalar > |
class | Eigen::Rotation2D< _Scalar > |
class | Eigen::Scaling< _Scalar, _Dim > |
class | Eigen::Transform< _Scalar, _Dim > |
class | Eigen::Translation< _Scalar, _Dim > |
class | Eigen::Homogeneous< MatrixType, _Direction > |
class | Eigen::QuaternionBase< Derived > |
Typedefs | |
typedef AngleAxis< float > | Eigen::AngleAxisf |
single precision angle-axis type | |
typedef AngleAxis< double > | Eigen::AngleAxisd |
double precision angle-axis type | |
typedef Quaternion< float > | Eigen::Quaternionf |
single precision quaternion type | |
typedef Quaternion< double > | Eigen::Quaterniond |
double precision quaternion type | |
typedef Rotation2D< float > | Eigen::Rotation2Df |
single precision 2D rotation type | |
typedef Rotation2D< double > | Eigen::Rotation2Dd |
double precision 2D rotation type | |
typedef Scaling< float, 2 > | Eigen::Scaling2f |
typedef Scaling< double, 2 > | Eigen::Scaling2d |
typedef Scaling< float, 3 > | Eigen::Scaling3f |
typedef Scaling< double, 3 > | Eigen::Scaling3d |
typedef Transform< float, 2 > | Eigen::Transform2f |
typedef Transform< float, 3 > | Eigen::Transform3f |
typedef Transform< double, 2 > | Eigen::Transform2d |
typedef Transform< double, 3 > | Eigen::Transform3d |
typedef Translation< float, 2 > | Eigen::Translation2f |
typedef Translation< double, 2 > | Eigen::Translation2d |
typedef Translation< float, 3 > | Eigen::Translation3f |
typedef Translation< double, 3 > | Eigen::Translation3d |
typedef Map< Quaternion< float >, 0 > | Eigen::QuaternionMapf |
Map an unaligned array of single precision scalars as a quaternion. | |
typedef Map< Quaternion< double >, 0 > | Eigen::QuaternionMapd |
Map an unaligned array of double precision scalars as a quaternion. | |
typedef Map< Quaternion< float >, Aligned > | Eigen::QuaternionMapAlignedf |
Map a 16-byte aligned array of single precision scalars as a quaternion. | |
typedef Map< Quaternion< double >, Aligned > | Eigen::QuaternionMapAlignedd |
Map a 16-byte aligned array of double precision scalars as a quaternion. | |
typedef DiagonalMatrix< float, 2 > | Eigen::AlignedScaling2f |
typedef DiagonalMatrix< double, 2 > | Eigen::AlignedScaling2d |
typedef DiagonalMatrix< float, 3 > | Eigen::AlignedScaling3f |
typedef DiagonalMatrix< double, 3 > | Eigen::AlignedScaling3d |
typedef Transform< float, 2, Isometry > | Eigen::Isometry2f |
typedef Transform< float, 3, Isometry > | Eigen::Isometry3f |
typedef Transform< double, 2, Isometry > | Eigen::Isometry2d |
typedef Transform< double, 3, Isometry > | Eigen::Isometry3d |
typedef Transform< float, 2, Affine > | Eigen::Affine2f |
typedef Transform< float, 3, Affine > | Eigen::Affine3f |
typedef Transform< double, 2, Affine > | Eigen::Affine2d |
typedef Transform< double, 3, Affine > | Eigen::Affine3d |
typedef Transform< float, 2, AffineCompact > | Eigen::AffineCompact2f |
typedef Transform< float, 3, AffineCompact > | Eigen::AffineCompact3f |
typedef Transform< double, 2, AffineCompact > | Eigen::AffineCompact2d |
typedef Transform< double, 3, AffineCompact > | Eigen::AffineCompact3d |
typedef Transform< float, 2, Projective > | Eigen::Projective2f |
typedef Transform< float, 3, Projective > | Eigen::Projective3f |
typedef Transform< double, 2, Projective > | Eigen::Projective2d |
typedef Transform< double, 3, Projective > | Eigen::Projective3d |
Functions | |
template<typename Derived , typename OtherDerived > | |
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type | Eigen::umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true) |
Matrix< Scalar, 3, 1 > | Eigen::MatrixBase< Derived >::eulerAngles (Index a0, Index a1, Index a2) const |
typedef DiagonalMatrix<double,2> Eigen::AlignedScaling2d |
typedef DiagonalMatrix<float, 2> Eigen::AlignedScaling2f |
typedef DiagonalMatrix<double,3> Eigen::AlignedScaling3d |
typedef DiagonalMatrix<float, 3> Eigen::AlignedScaling3f |
|
inline |
*this
using the convention defined by the triplet (a0,a1,a2)Each of the three parameters a0,a1,a2 represents the respective rotation axis as an integer in {0,1,2}. For instance, in:
"2" represents the z axis and "0" the x axis, etc. The returned angles are such that we have the following equality:
This corresponds to the right-multiply conventions (with right hand side frames).
The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type Eigen::umeyama | ( | const MatrixBase< Derived > & | src, |
const MatrixBase< OtherDerived > & | dst, | ||
bool | with_scaling = true |
||
) |
Returns the transformation between two point sets.
The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
It estimates parameters \( c, \mathbf{R}, \) and \( \mathbf{t} \) such that
\begin{align*} \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 \end{align*}
is minimized.
The algorithm is based on the analysis of the covariance matrix \( \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \) of the input point sets \( \mathbf{x} \) and \( \mathbf{y} \) where \(d\) is corresponding to the dimension (which is typically small). The analysis is involving the SVD having a complexity of \(O(d^3)\) though the actual computational effort lies in the covariance matrix computation which has an asymptotic lower bound of \(O(dm)\) when the input point sets have dimension \(d \times m\).
Currently the method is working only for floating point matrices.
src | Source points \( \mathbf{x} = \left( x_1, \hdots, x_n \right) \). |
dst | Destination points \( \mathbf{y} = \left( y_1, \hdots, y_n \right) \). |
with_scaling | Sets \( c=1 \) when false is passed. |
\begin{align*} T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \end{align*}
minimizing the resudiual above. This transformation is always returned as an Eigen::Matrix.