|
| AtrousConvolution () |
| Create the AtrousConvolution object.
|
|
| AtrousConvolution (const size_t inSize, const size_t outSize, const size_t kernelWidth, const size_t kernelHeight, const size_t strideWidth=1, const size_t strideHeight=1, const size_t padW=0, const size_t padH=0, const size_t inputWidth=0, const size_t inputHeight=0, const size_t dilationWidth=1, const size_t dilationHeight=1, const std::string &paddingType="None") |
| Create the AtrousConvolution object using the specified number of input maps, output maps, filter size, stride, dilation and padding parameter. More...
|
|
| AtrousConvolution (const size_t inSize, const size_t outSize, const size_t kernelWidth, const size_t kernelHeight, const size_t strideWidth, const size_t strideHeight, const std::tuple< size_t, size_t > &padW, const std::tuple< size_t, size_t > &padH, const size_t inputWidth=0, const size_t inputHeight=0, const size_t dilationWidth=1, const size_t dilationHeight=1, const std::string &paddingType="None") |
| Create the AtrousConvolution object using the specified number of input maps, output maps, filter size, stride, dilation and padding parameter. More...
|
|
void | Reset () |
|
template<typename eT > |
void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
| Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
|
|
template<typename eT > |
void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More...
|
|
template<typename eT > |
void | Gradient (const arma::Mat< eT > &, const arma::Mat< eT > &error, arma::Mat< eT > &gradient) |
|
OutputDataType const & | Parameters () const |
| Get the parameters.
|
|
OutputDataType & | Parameters () |
| Modify the parameters.
|
|
arma::cube const & | Weight () const |
| Get the weight of the layer.
|
|
arma::cube & | Weight () |
| Modify the weight of the layer.
|
|
arma::mat const & | Bias () const |
| Get the bias of the layer.
|
|
arma::mat & | Bias () |
| Modify the bias of the layer.
|
|
OutputDataType const & | OutputParameter () const |
| Get the output parameter.
|
|
OutputDataType & | OutputParameter () |
| Modify the output parameter.
|
|
OutputDataType const & | Delta () const |
| Get the delta.
|
|
OutputDataType & | Delta () |
| Modify the delta.
|
|
OutputDataType const & | Gradient () const |
| Get the gradient.
|
|
OutputDataType & | Gradient () |
| Modify the gradient.
|
|
size_t | InputWidth () const |
| Get the input width.
|
|
size_t & | InputWidth () |
| Modify input the width.
|
|
size_t | InputHeight () const |
| Get the input height.
|
|
size_t & | InputHeight () |
| Modify the input height.
|
|
size_t | OutputWidth () const |
| Get the output width.
|
|
size_t & | OutputWidth () |
| Modify the output width.
|
|
size_t | OutputHeight () const |
| Get the output height.
|
|
size_t & | OutputHeight () |
| Modify the output height.
|
|
size_t | InputSize () const |
| Get the input size.
|
|
size_t | OutputSize () const |
| Get the output size.
|
|
size_t | KernelWidth () const |
| Get the kernel width.
|
|
size_t & | KernelWidth () |
| Modify the kernel width.
|
|
size_t | KernelHeight () const |
| Get the kernel height.
|
|
size_t & | KernelHeight () |
| Modify the kernel height.
|
|
size_t | StrideWidth () const |
| Get the stride width.
|
|
size_t & | StrideWidth () |
| Modify the stride width.
|
|
size_t | StrideHeight () const |
| Get the stride height.
|
|
size_t & | StrideHeight () |
| Modify the stride height.
|
|
size_t | DilationWidth () const |
| Get the dilation rate on the X axis.
|
|
size_t & | DilationWidth () |
| Modify the dilation rate on the X axis.
|
|
size_t | DilationHeight () const |
| Get the dilation rate on the Y axis.
|
|
size_t & | DilationHeight () |
| Modify the dilation rate on the Y axis.
|
|
ann::Padding const & | Padding () const |
| Get the internal Padding layer.
|
|
ann::Padding & | Padding () |
| Modify the internal Padding layer.
|
|
size_t | WeightSize () const |
| Get size of the weight matrix.
|
|
size_t | InputShape () const |
| Get the shape of the input.
|
|
template<typename Archive > |
void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer.
|
|
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::AtrousConvolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >
Implementation of the Atrous Convolution class.
The Atrous Convolution class represents a single layer of a neural network. Atrous (or Dilated) Convolutions are just simple convolutions applied to input with the defined, spaces included between the kernel cells, in order to capture a larger field of reception, without having to increase dicrete kernel sizes.
- Template Parameters
-
ForwardConvolutionRule | Atrous Convolution to perform forward process. |
BackwardConvolutionRule | Atrous Convolution to perform backward process. |
GradientConvolutionRule | Atrous Convolution to calculate gradient. |
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
template<typename ForwardConvolutionRule , typename BackwardConvolutionRule , typename GradientConvolutionRule , typename InputDataType , typename OutputDataType >
mlpack::ann::AtrousConvolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::AtrousConvolution |
( |
const size_t |
inSize, |
|
|
const size_t |
outSize, |
|
|
const size_t |
kernelWidth, |
|
|
const size_t |
kernelHeight, |
|
|
const size_t |
strideWidth = 1 , |
|
|
const size_t |
strideHeight = 1 , |
|
|
const size_t |
padW = 0 , |
|
|
const size_t |
padH = 0 , |
|
|
const size_t |
inputWidth = 0 , |
|
|
const size_t |
inputHeight = 0 , |
|
|
const size_t |
dilationWidth = 1 , |
|
|
const size_t |
dilationHeight = 1 , |
|
|
const std::string & |
paddingType = "None" |
|
) |
| |
Create the AtrousConvolution object using the specified number of input maps, output maps, filter size, stride, dilation and padding parameter.
- Parameters
-
inSize | The number of input maps. |
outSize | The number of output maps. |
kernelWidth | Width of the filter/kernel. |
kernelHeight | Height of the filter/kernel. |
strideWidth | Stride of filter application in the x direction. |
strideHeight | Stride of filter application in the y direction. |
padW | Padding width of the input. |
padH | Padding height of the input. |
inputWidth | The widht of the input data. |
inputHeight | The height of the input data. |
dilationWidth | The space between the cells of filters in x direction. |
dilationHeight | The space between the cells of filters in y direction. |
paddingType | The type of padding (Valid or Same). Defaults to None. |
template<typename ForwardConvolutionRule , typename BackwardConvolutionRule , typename GradientConvolutionRule , typename InputDataType , typename OutputDataType >
mlpack::ann::AtrousConvolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::AtrousConvolution |
( |
const size_t |
inSize, |
|
|
const size_t |
outSize, |
|
|
const size_t |
kernelWidth, |
|
|
const size_t |
kernelHeight, |
|
|
const size_t |
strideWidth, |
|
|
const size_t |
strideHeight, |
|
|
const std::tuple< size_t, size_t > & |
padW, |
|
|
const std::tuple< size_t, size_t > & |
padH, |
|
|
const size_t |
inputWidth = 0 , |
|
|
const size_t |
inputHeight = 0 , |
|
|
const size_t |
dilationWidth = 1 , |
|
|
const size_t |
dilationHeight = 1 , |
|
|
const std::string & |
paddingType = "None" |
|
) |
| |
Create the AtrousConvolution object using the specified number of input maps, output maps, filter size, stride, dilation and padding parameter.
- Parameters
-
inSize | The number of input maps. |
outSize | The number of output maps. |
kernelWidth | Width of the filter/kernel. |
kernelHeight | Height of the filter/kernel. |
strideWidth | Stride of filter application in the x direction. |
strideHeight | Stride of filter application in the y direction. |
padW | A two-value tuple indicating padding widths of the input. First value is padding at left side. Second value is padding on right side. |
padH | A two-value tuple indicating padding heights of the input. First value is padding at top. Second value is padding on bottom. |
inputWidth | The widht of the input data. |
inputHeight | The height of the input data. |
dilationWidth | The space between the cells of filters in x direction. |
dilationHeight | The space between the cells of filters in y direction. |
paddingType | The type of padding (Valid/Same/None). Defaults to None. |
template<typename ForwardConvolutionRule , typename BackwardConvolutionRule , typename GradientConvolutionRule , typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::AtrousConvolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Backward |
( |
const arma::Mat< eT > & |
, |
|
|
const arma::Mat< eT > & |
gy, |
|
|
arma::Mat< eT > & |
g |
|
) |
| |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed forward pass.
- Parameters
-
* | (input) The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
template<typename ForwardConvolutionRule , typename BackwardConvolutionRule , typename GradientConvolutionRule , typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::AtrousConvolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Forward |
( |
const arma::Mat< eT > & |
input, |
|
|
arma::Mat< eT > & |
output |
|
) |
| |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
- Parameters
-
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |