mlpack
Public Types | Public Member Functions | List of all members
mlpack::ann::FastLSTM< InputDataType, OutputDataType > Class Template Reference

An implementation of a faster version of the Fast LSTM network layer. More...

#include <fast_lstm.hpp>

Public Types

typedef InputDataType::elem_type InputElemType
 
typedef OutputDataType::elem_type ElemType
 

Public Member Functions

 FastLSTM ()
 Create the Fast LSTM object.
 
 FastLSTM (const FastLSTM &layer)
 Copy Constructor.
 
 FastLSTM (FastLSTM &&layer)
 Move Constructor.
 
FastLSTMoperator= (const FastLSTM &layer)
 Copy assignment operator.
 
FastLSTMoperator= (FastLSTM &&layer)
 Move assignment operator.
 
 FastLSTM (const size_t inSize, const size_t outSize, const size_t rho=std::numeric_limits< size_t >::max())
 Create the Fast LSTM layer object using the specified parameters. More...
 
template<typename InputType , typename OutputType >
void Forward (const InputType &input, OutputType &output)
 Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
 
template<typename InputType , typename ErrorType , typename GradientType >
void Backward (const InputType &input, const ErrorType &gy, GradientType &g)
 Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More...
 
void Reset ()
 
void ResetCell (const size_t size)
 
template<typename InputType , typename ErrorType , typename GradientType >
void Gradient (const InputType &input, const ErrorType &error, GradientType &gradient)
 
size_t Rho () const
 Get the maximum number of steps to backpropagate through time (BPTT).
 
size_t & Rho ()
 Modify the maximum number of steps to backpropagate through time (BPTT).
 
OutputDataType const & Parameters () const
 Get the parameters.
 
OutputDataType & Parameters ()
 Modify the parameters.
 
OutputDataType const & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
OutputDataType const & Delta () const
 Get the delta.
 
OutputDataType & Delta ()
 Modify the delta.
 
OutputDataType const & Gradient () const
 Get the gradient.
 
OutputDataType & Gradient ()
 Modify the gradient.
 
size_t InSize () const
 Get the number of input units.
 
size_t OutSize () const
 Get the number of output units.
 
size_t WeightSize () const
 Get the size of the weight matrix.
 
size_t InputShape () const
 Get the shape of the input.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::FastLSTM< InputDataType, OutputDataType >

An implementation of a faster version of the Fast LSTM network layer.

Basically by combining the calculation of the input, forget, output gates and hidden state in a single step. The standard formula changes as follows:

\begin{eqnarray} i &=& sigmoid(W \cdot x + W \cdot h + b) \\ f &=& sigmoid(W \cdot x + W \cdot h + b) \\ z &=& tanh(W \cdot x + W \cdot h + b) \\ c &=& f \cdot c + i \cdot z \\ o &=& sigmoid(W \cdot x + W \cdot h + b) \\ h &=& o \cdot tanh(c) \end{eqnarray}

Note that FastLSTM network layer does not use peephole connections between the cell and gates.

Note also that if a FastLSTM layer is desired as the first layer of a neural network, an IdentityLayer should be added to the network as the first layer, and then the FastLSTM layer should be added.

For more information, see the following.

@article{Hochreiter1997,
author = {Hochreiter, Sepp and Schmidhuber, J\"{u}rgen},
title = {Long Short-term Memory},
journal = {Neural Comput.},
year = {1997},
url = {https://www.bioinf.jku.at/publications/older/2604.pdf}
}
See also
LSTM for a standard implementation of the LSTM layer.
Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Constructor & Destructor Documentation

◆ FastLSTM()

template<typename InputDataType , typename OutputDataType >
mlpack::ann::FastLSTM< InputDataType, OutputDataType >::FastLSTM ( const size_t  inSize,
const size_t  outSize,
const size_t  rho = std::numeric_limits<size_t>::max() 
)

Create the Fast LSTM layer object using the specified parameters.

Parameters
inSizeThe number of input units.
outSizeThe number of output units.
rhoMaximum number of steps to backpropagate through time (BPTT).

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename InputType , typename ErrorType , typename GradientType >
void mlpack::ann::FastLSTM< InputDataType, OutputDataType >::Backward ( const InputType &  input,
const ErrorType &  gy,
GradientType &  g 
)

Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.

Using the results from the feed forward pass.

Parameters
inputThe propagated input activation.
gyThe backpropagated error.
gThe calculated gradient.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename InputType , typename OutputType >
void mlpack::ann::FastLSTM< InputDataType, OutputDataType >::Forward ( const InputType &  input,
OutputType &  output 
)

Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.

Parameters
inputInput data used for evaluating the specified function.
outputResulting output activation.

The documentation for this class was generated from the following files: